Cargando…
Changes of Myogenic Reactive Oxygen Species and Interleukin-6 in Contracting Skeletal Muscle Cells
The aim of this study was to measure changes in myotube reactive oxygen species (ROS) and the production of interleukin (IL)-6 in electrically stimulated mouse C2C12 skeletal muscle cells. After five days of differentiation, myotubes were stimulated using an electrical stimulator set at 45 V at a fr...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi Publishing Corporation
2012
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3361309/ https://www.ncbi.nlm.nih.gov/pubmed/22666517 http://dx.doi.org/10.1155/2012/145418 |
Sumario: | The aim of this study was to measure changes in myotube reactive oxygen species (ROS) and the production of interleukin (IL)-6 in electrically stimulated mouse C2C12 skeletal muscle cells. After five days of differentiation, myotubes were stimulated using an electrical stimulator set at 45 V at a frequency of 5 Hz, with a pulse width of 20 ms. Acute stimulations were performed for 45, 60, 75, 90, or 120 min in each dish. ROSs were detected in the extracted cells directly using a fluorescent probe. IL-6 mRNA expression in C2C12 myotubes and IL-6 concentration in C2C12 myotube supernatants were determined using real-time PCR and ELISA, respectively. Compared with control cells, ROS generation was significantly increased at 45 min after the onset of stimulation (P < 0.01) and continued to increase, reaching a maximum at 120 min. IL-6 mRNA expression and IL-6 concentration in C2C12 cells were significantly increased after 75 min (P < 0.01) and 120 min (P < 0.05) of electrical stimulation (ES) compared with the control cells. Our data show that a specific ES intensity may modulate ROS accumulation and affect IL-6 gene expression in contracting skeletal muscle cells. |
---|