Cargando…
Translation of EEG Spatial Filters from Resting to Motor Imagery Using Independent Component Analysis
Electroencephalogram (EEG)-based brain-computer interfaces (BCIs) often use spatial filters to improve signal-to-noise ratio of task-related EEG activities. To obtain robust spatial filters, large amounts of labeled data, which are often expensive and labor-intensive to obtain, need to be collected...
Autores principales: | Wang, Yijun, Wang, Yu-Te, Jung, Tzyy-Ping |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2012
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3362620/ https://www.ncbi.nlm.nih.gov/pubmed/22666377 http://dx.doi.org/10.1371/journal.pone.0037665 |
Ejemplares similares
-
Decoding Motor Imagery through Common Spatial Pattern Filters at the EEG Source Space
por: Xygonakis, Ioannis, et al.
Publicado: (2018) -
A Parallel Multiscale Filter Bank Convolutional Neural Networks for Motor Imagery EEG Classification
por: Wu, Hao, et al.
Publicado: (2019) -
A Novel Two-Stage Refine Filtering Method for EEG-Based Motor Imagery Classification
por: Yan, Yuxin, et al.
Publicado: (2021) -
Predicting Motor Imagery Performance From Resting-State EEG Using Dynamic Causal Modeling
por: Lee, Minji, et al.
Publicado: (2020) -
A motor imagery vs. rest dataset with low-cost consumer grade EEG hardware()
por: Peterson, Victoria, et al.
Publicado: (2022)