Cargando…
Genomic selection using regularized linear regression models: ridge regression, lasso, elastic net and their extensions
BACKGROUND: Genomic selection (GS) is emerging as an efficient and cost-effective method for estimating breeding values using molecular markers distributed over the entire genome. In essence, it involves estimating the simultaneous effects of all genes or chromosomal segments and combining the estim...
Autores principales: | Ogutu, Joseph O, Schulz-Streeck, Torben, Piepho, Hans-Peter |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2012
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3363152/ https://www.ncbi.nlm.nih.gov/pubmed/22640436 http://dx.doi.org/10.1186/1753-6561-6-S2-S10 |
Ejemplares similares
-
Genome-wide selection by mixed model ridge regression and extensions based on geostatistical models
por: Schulz-Streeck, Torben, et al.
Publicado: (2010) -
Regularized group regression methods for genomic prediction: Bridge, MCP, SCAD, group bridge, group lasso, sparse group lasso, group MCP and group SCAD
por: Ogutu, Joseph O, et al.
Publicado: (2014) -
Pre-selection of markers for genomic selection
por: Schulz-Streeck, Torben, et al.
Publicado: (2011) -
A comparison of random forests, boosting and support vector machines for genomic selection
por: Ogutu, Joseph O, et al.
Publicado: (2011) -
Sensor Selection for Tidal Volume Determination via Linear Regression—Impact of Lasso versus Ridge Regression
por: Laufer, Bernhard, et al.
Publicado: (2023)