Cargando…
Alternative strategies for selecting subsets of predicting SNPs by LASSO-LARS procedure
BACKGROUND: The least absolute shrinkage and selection operator (LASSO) can be used to predict SNP effects. This operator has the desirable feature of including in the model only a subset of explanatory SNPs, which can be useful both in QTL detection and GWS studies. LASSO solutions can be obtained...
Autores principales: | Usai, M Graziano, Carta, Antonello, Casu, Sara |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2012
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3363163/ https://www.ncbi.nlm.nih.gov/pubmed/22640825 http://dx.doi.org/10.1186/1753-6561-6-S2-S9 |
Ejemplares similares
-
XVI(th )QTLMAS: simulated dataset and comparative analysis of submitted results for QTL mapping and genomic evaluation
por: Usai, M Graziano, et al.
Publicado: (2014) -
Shrunken methodology to genome-wide SNPs selection and construction of SNPs networks
por: Liu, Yang, et al.
Publicado: (2010) -
Using LASSO regression to detect predictive aggregate effects in genetic studies
por: Fontanarosa, Joel B, et al.
Publicado: (2011) -
Resampling procedures to identify important SNPs using a consensus approach
por: Pardy, Christopher, et al.
Publicado: (2011) -
Regularized group regression methods for genomic prediction: Bridge, MCP, SCAD, group bridge, group lasso, sparse group lasso, group MCP and group SCAD
por: Ogutu, Joseph O, et al.
Publicado: (2014)