Cargando…
Resting-State Multi-Spectrum Functional Connectivity Networks for Identification of MCI Patients
In this paper, a high-dimensional pattern classification framework, based on functional associations between brain regions during resting-state, is proposed to accurately identify MCI individuals from subjects who experience normal aging. The proposed technique employs multi-spectrum networks to cha...
Autores principales: | Wee, Chong-Yaw, Yap, Pew-Thian, Denny, Kevin, Browndyke, Jeffrey N., Potter, Guy G., Welsh-Bohmer, Kathleen A., Wang, Lihong, Shen, Dinggang |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2012
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3364275/ https://www.ncbi.nlm.nih.gov/pubmed/22666397 http://dx.doi.org/10.1371/journal.pone.0037828 |
Ejemplares similares
-
Hierarchical Anatomical Brain Networks for MCI Prediction: Revisiting Volumetric Measures
por: Zhou, Luping, et al.
Publicado: (2011) -
Disrupted Brain Functional Network in Internet Addiction Disorder: A Resting-State Functional Magnetic Resonance Imaging Study
por: Wee, Chong-Yaw, et al.
Publicado: (2014) -
Improving Estimation of Fiber Orientations in Diffusion MRI Using Inter-Subject Information Sharing
por: Chen, Geng, et al.
Publicado: (2016) -
Multilevel Deficiency of White Matter Connectivity Networks in Alzheimer's Disease: A Diffusion MRI Study with DTI and HARDI Models
por: Wang, Tao, et al.
Publicado: (2016) -
Fast Groupwise Registration Using Multi-Level and Multi-Resolution Graph Shrinkage
por: Dong, Pei, et al.
Publicado: (2019)