Cargando…
Causal Information Approach to Partial Conditioning in Multivariate Data Sets
When evaluating causal influence from one time series to another in a multivariate data set it is necessary to take into account the conditioning effect of the other variables. In the presence of many variables and possibly of a reduced number of samples, full conditioning can lead to computational...
Autores principales: | Marinazzo, D., Pellicoro, M., Stramaglia, S. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi Publishing Corporation
2012
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3364562/ https://www.ncbi.nlm.nih.gov/pubmed/22675400 http://dx.doi.org/10.1155/2012/303601 |
Ejemplares similares
-
Recovering directed networks in neuroimaging datasets using partially conditioned Granger causality
por: Wu, G, et al.
Publicado: (2013) -
Information Flow in Networks and the Law of Diminishing Marginal Returns: Evidence from Modeling and Human Electroencephalographic Recordings
por: Marinazzo, Daniele, et al.
Publicado: (2012) -
Synergistic information in a dynamical model implemented on the human structural connectome reveals spatially distinct associations with age
por: Nuzzi, Davide, et al.
Publicado: (2020) -
Information transfer of an Ising model on a brain network
por: Marinazzo, D, et al.
Publicado: (2013) -
Information Transfer and Criticality in the Ising Model on the Human Connectome
por: Marinazzo, Daniele, et al.
Publicado: (2014)