Cargando…
Non-negative matrix factorisation methods for the spectral decomposition of MRS data from human brain tumours
BACKGROUND: In-vivo single voxel proton magnetic resonance spectroscopy (SV (1)H-MRS), coupled with supervised pattern recognition (PR) methods, has been widely used in clinical studies of discrimination of brain tumour types and follow-up of patients bearing abnormal brain masses. SV (1)H-MRS provi...
Autores principales: | Ortega-Martorell, Sandra, Lisboa, Paulo JG, Vellido, Alfredo, Julià-Sapé, Margarida, Arús, Carles |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2012
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3364901/ https://www.ncbi.nlm.nih.gov/pubmed/22401579 http://dx.doi.org/10.1186/1471-2105-13-38 |
Ejemplares similares
-
Convex Non-Negative Matrix Factorization for Brain Tumor Delimitation from MRSI Data
por: Ortega-Martorell, Sandra, et al.
Publicado: (2012) -
A Novel Semi-Supervised Methodology for Extracting Tumor Type-Specific MRS Sources in Human Brain Data
por: Ortega-Martorell, Sandra, et al.
Publicado: (2013) -
SpectraClassifier 1.0: a user friendly, automated MRS-based classifier-development system
por: Ortega-Martorell, Sandra, et al.
Publicado: (2010) -
Using Single-Voxel Magnetic Resonance Spectroscopy Data Acquired at 1.5T to Classify Multivoxel Data at 3T: A Proof-of-Concept Study
por: Ungan, Gülnur, et al.
Publicado: (2023) -
From raw data to data-analysis for magnetic resonance spectroscopy – the missing link: jMRUI2XML
por: Mocioiu, Victor, et al.
Publicado: (2015)