Cargando…
Gradient estimation in dendritic reinforcement learning
We study synaptic plasticity in a complex neuronal cell model where NMDA-spikes can arise in certain dendritic zones. In the context of reinforcement learning, two kinds of plasticity rules are derived, zone reinforcement (ZR) and cell reinforcement (CR), which both optimize the expected reward by s...
Autores principales: | Schiess, Mathieu, Urbanczik, Robert, Senn, Walter |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer
2012
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3365869/ https://www.ncbi.nlm.nih.gov/pubmed/22657827 http://dx.doi.org/10.1186/2190-8567-2-2 |
Ejemplares similares
-
Reinforcement learning in dendritic structures
por: Schiess, Mathieu, et al.
Publicado: (2011) -
Somato-dendritic Synaptic Plasticity and Error-backpropagation in Active Dendrites
por: Schiess, Mathieu, et al.
Publicado: (2016) -
Spike-Based Reinforcement Learning in Continuous State and Action Space: When Policy Gradient Methods Fail
por: Vasilaki, Eleni, et al.
Publicado: (2009) -
Correction: Spike-Based Reinforcement Learning in Continuous State and Action Space: When Policy Gradient Methods Fail
por: Vasilaki, Eleni, et al.
Publicado: (2009) -
Policy gradient rules for populations of spiking neurons
por: Friedrich, Johannes, et al.
Publicado: (2011)