Cargando…

Hydrogen peroxide—a central hub for information flow in plant cells

BACKGROUND: Hydrogen peroxide (H(2)O(2)) was initially recognized as a toxic reactive oxygen species, able to cause damage to a variety of cellular structures. However, it became clear in the last decade that H(2)O(2) can also act as a potent signalling molecule, involved in a plethora of physiologi...

Descripción completa

Detalles Bibliográficos
Autores principales: Petrov, Veselin Dimitrov, Van Breusegem, Frank
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Oxford University Press 2012
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3366437/
https://www.ncbi.nlm.nih.gov/pubmed/22708052
http://dx.doi.org/10.1093/aobpla/pls014
Descripción
Sumario:BACKGROUND: Hydrogen peroxide (H(2)O(2)) was initially recognized as a toxic reactive oxygen species, able to cause damage to a variety of cellular structures. However, it became clear in the last decade that H(2)O(2) can also act as a potent signalling molecule, involved in a plethora of physiological functions. SCOPE: In the present review, we offer a brief summary of H(2)O(2) signalling events and focus on the mechanisms of its perception and signal transduction, the factors that act downstream, as well as H(2)O(2) interference with other information transfer mechanisms. CONCLUSION: The significant scientific effort in the last 10 years to determine the position of H(2)O(2) in signal transduction networks in plants demonstrated that it is essential for both the communication with external biotic and abiotic stimuli and the control of developmentally regulated processes. In addition, H(2)O(2) complements, synergizes or antagonizes many cellular regulatory circuits by active interaction with other signals and plant hormones during growth, development and stress responses. Therefore, further understanding of H(2)O(2) signal transduction is not only of fundamental, but also of practical importance, since this knowledge may contribute to improve agricultural practices and reduce stress-induced damage to crops.