Cargando…

Extrasynaptic Neurotransmission in the Modulation of Brain Function. Focus on the Striatal Neuronal–Glial Networks

Extrasynaptic neurotransmission is an important short distance form of volume transmission (VT) and describes the extracellular diffusion of transmitters and modulators after synaptic spillover or extrasynaptic release in the local circuit regions binding to and activating mainly extrasynaptic neuro...

Descripción completa

Detalles Bibliográficos
Autores principales: Fuxe, Kjell, Borroto-Escuela, Dasiel O., Romero-Fernandez, Wilber, Diaz-Cabiale, Zaida, Rivera, Alicia, Ferraro, Luca, Tanganelli, Sergio, Tarakanov, Alexander O., Garriga, Pere, Narváez, José Angel, Ciruela, Francisco, Guescini, Michele, Agnati, Luigi F.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Frontiers Research Foundation 2012
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3366473/
https://www.ncbi.nlm.nih.gov/pubmed/22675301
http://dx.doi.org/10.3389/fphys.2012.00136
_version_ 1782234746310361088
author Fuxe, Kjell
Borroto-Escuela, Dasiel O.
Romero-Fernandez, Wilber
Diaz-Cabiale, Zaida
Rivera, Alicia
Ferraro, Luca
Tanganelli, Sergio
Tarakanov, Alexander O.
Garriga, Pere
Narváez, José Angel
Ciruela, Francisco
Guescini, Michele
Agnati, Luigi F.
author_facet Fuxe, Kjell
Borroto-Escuela, Dasiel O.
Romero-Fernandez, Wilber
Diaz-Cabiale, Zaida
Rivera, Alicia
Ferraro, Luca
Tanganelli, Sergio
Tarakanov, Alexander O.
Garriga, Pere
Narváez, José Angel
Ciruela, Francisco
Guescini, Michele
Agnati, Luigi F.
author_sort Fuxe, Kjell
collection PubMed
description Extrasynaptic neurotransmission is an important short distance form of volume transmission (VT) and describes the extracellular diffusion of transmitters and modulators after synaptic spillover or extrasynaptic release in the local circuit regions binding to and activating mainly extrasynaptic neuronal and glial receptors in the neuroglial networks of the brain. Receptor-receptor interactions in G protein-coupled receptor (GPCR) heteromers play a major role, on dendritic spines and nerve terminals including glutamate synapses, in the integrative processes of the extrasynaptic signaling. Heteromeric complexes between GPCR and ion-channel receptors play a special role in the integration of the synaptic and extrasynaptic signals. Changes in extracellular concentrations of the classical synaptic neurotransmitters glutamate and GABA found with microdialysis is likely an expression of the activity of the neuron-astrocyte unit of the brain and can be used as an index of VT-mediated actions of these two neurotransmitters in the brain. Thus, the activity of neurons may be functionally linked to the activity of astrocytes, which may release glutamate and GABA to the extracellular space where extrasynaptic glutamate and GABA receptors do exist. Wiring transmission (WT) and VT are fundamental properties of all neurons of the CNS but the balance between WT and VT varies from one nerve cell population to the other. The focus is on the striatal cellular networks, and the WT and VT and their integration via receptor heteromers are described in the GABA projection neurons, the glutamate, dopamine, 5-hydroxytryptamine (5-HT) and histamine striatal afferents, the cholinergic interneurons, and different types of GABA interneurons. In addition, the role in these networks of VT signaling of the energy-dependent modulator adenosine and of endocannabinoids mainly formed in the striatal projection neurons will be underlined to understand the communication in the striatal cellular networks.
format Online
Article
Text
id pubmed-3366473
institution National Center for Biotechnology Information
language English
publishDate 2012
publisher Frontiers Research Foundation
record_format MEDLINE/PubMed
spelling pubmed-33664732012-06-06 Extrasynaptic Neurotransmission in the Modulation of Brain Function. Focus on the Striatal Neuronal–Glial Networks Fuxe, Kjell Borroto-Escuela, Dasiel O. Romero-Fernandez, Wilber Diaz-Cabiale, Zaida Rivera, Alicia Ferraro, Luca Tanganelli, Sergio Tarakanov, Alexander O. Garriga, Pere Narváez, José Angel Ciruela, Francisco Guescini, Michele Agnati, Luigi F. Front Physiol Physiology Extrasynaptic neurotransmission is an important short distance form of volume transmission (VT) and describes the extracellular diffusion of transmitters and modulators after synaptic spillover or extrasynaptic release in the local circuit regions binding to and activating mainly extrasynaptic neuronal and glial receptors in the neuroglial networks of the brain. Receptor-receptor interactions in G protein-coupled receptor (GPCR) heteromers play a major role, on dendritic spines and nerve terminals including glutamate synapses, in the integrative processes of the extrasynaptic signaling. Heteromeric complexes between GPCR and ion-channel receptors play a special role in the integration of the synaptic and extrasynaptic signals. Changes in extracellular concentrations of the classical synaptic neurotransmitters glutamate and GABA found with microdialysis is likely an expression of the activity of the neuron-astrocyte unit of the brain and can be used as an index of VT-mediated actions of these two neurotransmitters in the brain. Thus, the activity of neurons may be functionally linked to the activity of astrocytes, which may release glutamate and GABA to the extracellular space where extrasynaptic glutamate and GABA receptors do exist. Wiring transmission (WT) and VT are fundamental properties of all neurons of the CNS but the balance between WT and VT varies from one nerve cell population to the other. The focus is on the striatal cellular networks, and the WT and VT and their integration via receptor heteromers are described in the GABA projection neurons, the glutamate, dopamine, 5-hydroxytryptamine (5-HT) and histamine striatal afferents, the cholinergic interneurons, and different types of GABA interneurons. In addition, the role in these networks of VT signaling of the energy-dependent modulator adenosine and of endocannabinoids mainly formed in the striatal projection neurons will be underlined to understand the communication in the striatal cellular networks. Frontiers Research Foundation 2012-06-04 /pmc/articles/PMC3366473/ /pubmed/22675301 http://dx.doi.org/10.3389/fphys.2012.00136 Text en Copyright © 2012 Fuxe, Borroto-Escuela, Romero-Fernandez, Diaz-Cabiale, Rivera, Ferraro, Tanganelli, Tarakanov, Garriga, Narváez, Ciruela, Guescini and Agnati. http://www.frontiersin.org/licenseagreement This is an open-access article distributed under the terms of the Creative Commons Attribution Non Commercial License, which permits non-commercial use, distribution, and reproduction in other forums, provided the original authors and source are credited.
spellingShingle Physiology
Fuxe, Kjell
Borroto-Escuela, Dasiel O.
Romero-Fernandez, Wilber
Diaz-Cabiale, Zaida
Rivera, Alicia
Ferraro, Luca
Tanganelli, Sergio
Tarakanov, Alexander O.
Garriga, Pere
Narváez, José Angel
Ciruela, Francisco
Guescini, Michele
Agnati, Luigi F.
Extrasynaptic Neurotransmission in the Modulation of Brain Function. Focus on the Striatal Neuronal–Glial Networks
title Extrasynaptic Neurotransmission in the Modulation of Brain Function. Focus on the Striatal Neuronal–Glial Networks
title_full Extrasynaptic Neurotransmission in the Modulation of Brain Function. Focus on the Striatal Neuronal–Glial Networks
title_fullStr Extrasynaptic Neurotransmission in the Modulation of Brain Function. Focus on the Striatal Neuronal–Glial Networks
title_full_unstemmed Extrasynaptic Neurotransmission in the Modulation of Brain Function. Focus on the Striatal Neuronal–Glial Networks
title_short Extrasynaptic Neurotransmission in the Modulation of Brain Function. Focus on the Striatal Neuronal–Glial Networks
title_sort extrasynaptic neurotransmission in the modulation of brain function. focus on the striatal neuronal–glial networks
topic Physiology
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3366473/
https://www.ncbi.nlm.nih.gov/pubmed/22675301
http://dx.doi.org/10.3389/fphys.2012.00136
work_keys_str_mv AT fuxekjell extrasynapticneurotransmissioninthemodulationofbrainfunctionfocusonthestriatalneuronalglialnetworks
AT borrotoescueladasielo extrasynapticneurotransmissioninthemodulationofbrainfunctionfocusonthestriatalneuronalglialnetworks
AT romerofernandezwilber extrasynapticneurotransmissioninthemodulationofbrainfunctionfocusonthestriatalneuronalglialnetworks
AT diazcabialezaida extrasynapticneurotransmissioninthemodulationofbrainfunctionfocusonthestriatalneuronalglialnetworks
AT riveraalicia extrasynapticneurotransmissioninthemodulationofbrainfunctionfocusonthestriatalneuronalglialnetworks
AT ferraroluca extrasynapticneurotransmissioninthemodulationofbrainfunctionfocusonthestriatalneuronalglialnetworks
AT tanganellisergio extrasynapticneurotransmissioninthemodulationofbrainfunctionfocusonthestriatalneuronalglialnetworks
AT tarakanovalexandero extrasynapticneurotransmissioninthemodulationofbrainfunctionfocusonthestriatalneuronalglialnetworks
AT garrigapere extrasynapticneurotransmissioninthemodulationofbrainfunctionfocusonthestriatalneuronalglialnetworks
AT narvaezjoseangel extrasynapticneurotransmissioninthemodulationofbrainfunctionfocusonthestriatalneuronalglialnetworks
AT ciruelafrancisco extrasynapticneurotransmissioninthemodulationofbrainfunctionfocusonthestriatalneuronalglialnetworks
AT guescinimichele extrasynapticneurotransmissioninthemodulationofbrainfunctionfocusonthestriatalneuronalglialnetworks
AT agnatiluigif extrasynapticneurotransmissioninthemodulationofbrainfunctionfocusonthestriatalneuronalglialnetworks