Cargando…
High Classification Accuracy for Schizophrenia with Rest and Task fMRI Data
We present a novel method to extract classification features from functional magnetic resonance imaging (fMRI) data collected at rest or during the performance of a task. By combining a two-level feature identification scheme with kernel principal component analysis (KPCA) and Fisher’s linear discri...
Autores principales: | Du, Wei, Calhoun, Vince D., Li, Hualiang, Ma, Sai, Eichele, Tom, Kiehl, Kent A., Pearlson, Godfrey D., Adali, Tülay |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Research Foundation
2012
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3366580/ https://www.ncbi.nlm.nih.gov/pubmed/22675292 http://dx.doi.org/10.3389/fnhum.2012.00145 |
Ejemplares similares
-
Classification of schizophrenia patients based on resting-state functional network connectivity
por: Arbabshirani, Mohammad R., et al.
Publicado: (2013) -
Higher Dimensional Meta-State Analysis Reveals Reduced Resting fMRI Connectivity Dynamism in Schizophrenia Patients
por: Miller, Robyn L., et al.
Publicado: (2016) -
Functional Brain Networks in Schizophrenia: A Review
por: Calhoun, Vince D., et al.
Publicado: (2009) -
Group Study of Simulated Driving fMRI Data by Multiset Canonical Correlation Analysis
por: Li, Yi-Ou, et al.
Publicado: (2011) -
Dynamic connectivity states estimated from resting fMRI Identify differences among Schizophrenia, bipolar disorder, and healthy control subjects
por: Rashid, Barnaly, et al.
Publicado: (2014)