Cargando…

A tunable zinc finger-based framework for Boolean logic computation in mammalian cells

The ability to perform molecular-level computation in mammalian cells has the potential to enable a new wave of sophisticated cell-based therapies and diagnostics. To this end, we developed a Boolean logic framework utilizing artificial Cys(2)–His(2) zinc finger transcription factors (ZF-TFs) as com...

Descripción completa

Detalles Bibliográficos
Autores principales: Lohmueller, Jason J., Armel, Thomas Z., Silver, Pamela A.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Oxford University Press 2012
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3367183/
https://www.ncbi.nlm.nih.gov/pubmed/22323524
http://dx.doi.org/10.1093/nar/gks142
Descripción
Sumario:The ability to perform molecular-level computation in mammalian cells has the potential to enable a new wave of sophisticated cell-based therapies and diagnostics. To this end, we developed a Boolean logic framework utilizing artificial Cys(2)–His(2) zinc finger transcription factors (ZF-TFs) as computing elements. Artificial ZFs can be designed to specifically bind different DNA sequences and thus comprise a diverse set of components ideal for the construction of scalable networks. We generate ZF-TF activators and repressors and demonstrate a novel, general method to tune ZF-TF response by fusing ZF-TFs to leucine zipper homodimerization domains. We describe 15 transcriptional activators that display 2- to 463-fold induction and 15 transcriptional repressors that show 1.3- to 16-fold repression. Using these ZF-TFs, we compute OR, NOR, AND and NAND logic, employing hybrid promoters and split intein-mediated protein splicing to integrate signals. The split intein strategy is able to fully reconstitute the ZF-TFs, maintaining them as a uniform set of computing elements. Together, these components comprise a robust platform for building mammalian synthetic gene circuits capable of precisely modulating cellular behavior.