Cargando…
The Sodium Iodide Symporter (NIS) as an Imaging Reporter for Gene, Viral, and Cell-based Therapies
Preclinical and clinical tomographic imaging systems increasingly are being utilized for non-invasive imaging of reporter gene products to reveal the distribution of molecular therapeutics within living subjects. Reporter gene and probe combinations can be employed to monitor vectors for gene, viral...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Bentham Science Publishers
2012
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3367315/ https://www.ncbi.nlm.nih.gov/pubmed/22263922 http://dx.doi.org/10.2174/156652312799789235 |
_version_ | 1782234833947197440 |
---|---|
author | Penheiter, Alan R Russell, Stephen J Carlson, Stephanie K |
author_facet | Penheiter, Alan R Russell, Stephen J Carlson, Stephanie K |
author_sort | Penheiter, Alan R |
collection | PubMed |
description | Preclinical and clinical tomographic imaging systems increasingly are being utilized for non-invasive imaging of reporter gene products to reveal the distribution of molecular therapeutics within living subjects. Reporter gene and probe combinations can be employed to monitor vectors for gene, viral, and cell-based therapies. There are several reporter systems available; however, those employing radionuclides for positron emission tomography (PET) or singlephoton emission computed tomography (SPECT) offer the highest sensitivity and the greatest promise for deep tissue imaging in humans. Within the category of radionuclide reporters, the thyroidal sodium iodide symporter (NIS) has emerged as one of the most promising for preclinical and translational research. NIS has been incorporated into a remarkable variety of viral and non-viral vectors in which its functionality is conveniently determined by in vitro iodide uptake assays prior to live animal imaging. This review on the NIS reporter will focus on 1) differences between endogenous NIS and heterologously-expressed NIS, 2) qualitative or comparative use of NIS as an imaging reporter in preclinical and translational gene therapy, oncolytic viral therapy, and cell trafficking research, and 3) use of NIS as an absolute quantitative reporter. |
format | Online Article Text |
id | pubmed-3367315 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2012 |
publisher | Bentham Science Publishers |
record_format | MEDLINE/PubMed |
spelling | pubmed-33673152012-06-05 The Sodium Iodide Symporter (NIS) as an Imaging Reporter for Gene, Viral, and Cell-based Therapies Penheiter, Alan R Russell, Stephen J Carlson, Stephanie K Curr Gene Ther Article Preclinical and clinical tomographic imaging systems increasingly are being utilized for non-invasive imaging of reporter gene products to reveal the distribution of molecular therapeutics within living subjects. Reporter gene and probe combinations can be employed to monitor vectors for gene, viral, and cell-based therapies. There are several reporter systems available; however, those employing radionuclides for positron emission tomography (PET) or singlephoton emission computed tomography (SPECT) offer the highest sensitivity and the greatest promise for deep tissue imaging in humans. Within the category of radionuclide reporters, the thyroidal sodium iodide symporter (NIS) has emerged as one of the most promising for preclinical and translational research. NIS has been incorporated into a remarkable variety of viral and non-viral vectors in which its functionality is conveniently determined by in vitro iodide uptake assays prior to live animal imaging. This review on the NIS reporter will focus on 1) differences between endogenous NIS and heterologously-expressed NIS, 2) qualitative or comparative use of NIS as an imaging reporter in preclinical and translational gene therapy, oncolytic viral therapy, and cell trafficking research, and 3) use of NIS as an absolute quantitative reporter. Bentham Science Publishers 2012-02 2012-02 /pmc/articles/PMC3367315/ /pubmed/22263922 http://dx.doi.org/10.2174/156652312799789235 Text en © 2012 Bentham Science Publishers http://creativecommons.org/licenses/by/2.5/ This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.5/), which permits unrestrictive use, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Article Penheiter, Alan R Russell, Stephen J Carlson, Stephanie K The Sodium Iodide Symporter (NIS) as an Imaging Reporter for Gene, Viral, and Cell-based Therapies |
title | The Sodium Iodide Symporter (NIS) as an Imaging Reporter for Gene, Viral, and Cell-based Therapies |
title_full | The Sodium Iodide Symporter (NIS) as an Imaging Reporter for Gene, Viral, and Cell-based Therapies |
title_fullStr | The Sodium Iodide Symporter (NIS) as an Imaging Reporter for Gene, Viral, and Cell-based Therapies |
title_full_unstemmed | The Sodium Iodide Symporter (NIS) as an Imaging Reporter for Gene, Viral, and Cell-based Therapies |
title_short | The Sodium Iodide Symporter (NIS) as an Imaging Reporter for Gene, Viral, and Cell-based Therapies |
title_sort | sodium iodide symporter (nis) as an imaging reporter for gene, viral, and cell-based therapies |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3367315/ https://www.ncbi.nlm.nih.gov/pubmed/22263922 http://dx.doi.org/10.2174/156652312799789235 |
work_keys_str_mv | AT penheiteralanr thesodiumiodidesymporternisasanimagingreporterforgeneviralandcellbasedtherapies AT russellstephenj thesodiumiodidesymporternisasanimagingreporterforgeneviralandcellbasedtherapies AT carlsonstephaniek thesodiumiodidesymporternisasanimagingreporterforgeneviralandcellbasedtherapies AT penheiteralanr sodiumiodidesymporternisasanimagingreporterforgeneviralandcellbasedtherapies AT russellstephenj sodiumiodidesymporternisasanimagingreporterforgeneviralandcellbasedtherapies AT carlsonstephaniek sodiumiodidesymporternisasanimagingreporterforgeneviralandcellbasedtherapies |