Cargando…

Biomechanical In Vitro - Stability Testing on Human Specimens of a Locking Plate System Against Conventional Screw Fixation of a Proximal First Metatarsal Lateral Displacement Osteotomy

INTRODUCTION: The aim of this study was to examine resistance to angulation and displacement of the internal fixation of a proximal first metatarsal lateral displacement osteotomy, using a locking plate system compared with a conventional crossed screw fixation. MATERIALS AND METHODOLOGY: Seven anat...

Descripción completa

Detalles Bibliográficos
Autores principales: Arnold, Heino, Stukenborg-Colsman, Christina, Hurschler, Christof, Seehaus, Frank, Bobrowitsch, Evgenij, Waizy, Hazibullah
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Bentham Open 2012
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3367465/
https://www.ncbi.nlm.nih.gov/pubmed/22675409
http://dx.doi.org/10.2174/1874325001206010133
Descripción
Sumario:INTRODUCTION: The aim of this study was to examine resistance to angulation and displacement of the internal fixation of a proximal first metatarsal lateral displacement osteotomy, using a locking plate system compared with a conventional crossed screw fixation. MATERIALS AND METHODOLOGY: Seven anatomical human specimens were tested. Each specimen was tested with a locking screw plate as well as a crossed cancellous srew fixation. The statistical analysis was performed by the Friedman test. The level of significance was p = 0.05. RESULTS: We found larger stability about all three axes of movement analyzed for the PLATE than the crossed screws osteosynthesis (CSO). The Friedman test showed statistical significance at a level of p = 0.05 for all groups and both translational and rotational movements. CONCLUSION: The results of our study confirm that the fixation of the lateral proximal first metatarsal displacement osteotomy with a locking plate fixation is a technically simple procedure of superior stability.