Cargando…
Freeze/Thaw-Induced Embolism: Probability of Critical Bubble Formation Depends on Speed of Ice Formation
Bubble formation in the conduits of woody plants sets a challenge for uninterrupted water transportation from the soil up to the canopy. Freezing and thawing of stems has been shown to increase the number of air-filled (embolized) conduits, especially in trees with large conduit diameters. Despite n...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Research Foundation
2012
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3368182/ https://www.ncbi.nlm.nih.gov/pubmed/22685446 http://dx.doi.org/10.3389/fpls.2012.00107 |
_version_ | 1782234915110125568 |
---|---|
author | Sevanto, Sanna Holbrook, N. Michele Ball, Marilyn C. |
author_facet | Sevanto, Sanna Holbrook, N. Michele Ball, Marilyn C. |
author_sort | Sevanto, Sanna |
collection | PubMed |
description | Bubble formation in the conduits of woody plants sets a challenge for uninterrupted water transportation from the soil up to the canopy. Freezing and thawing of stems has been shown to increase the number of air-filled (embolized) conduits, especially in trees with large conduit diameters. Despite numerous experimental studies, the mechanisms leading to bubble formation during freezing have not been addressed theoretically. We used classical nucleation theory and fluid mechanics to show which mechanisms are most likely to be responsible for bubble formation during freezing and what parameters determine the likelihood of the process. Our results confirm the common assumption that bubble formation during freezing is most likely due to gas segregation by ice. If xylem conduit walls are not permeable to the salts expelled by ice during the freezing process, osmotic pressures high enough for air seeding could be created. The build-up rate of segregated solutes in front of the ice-water interface depends equally on conduit diameter and freezing velocity. Therefore, bubble formation probability depends on these variables. The dependence of bubble formation probability on freezing velocity means that the experimental results obtained for cavitation threshold conduit diameters during freeze/thaw cycles depend on the experimental setup; namely sample size and cooling rate. The velocity dependence also suggests that to avoid bubble formation during freezing trees should have narrow conduits where freezing is likely to be fast (e.g., branches or outermost layer of the xylem). Avoidance of bubble formation during freezing could thus be one piece of the explanation why xylem conduit size of temperate and boreal zone trees varies quite systematically. |
format | Online Article Text |
id | pubmed-3368182 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2012 |
publisher | Frontiers Research Foundation |
record_format | MEDLINE/PubMed |
spelling | pubmed-33681822012-06-08 Freeze/Thaw-Induced Embolism: Probability of Critical Bubble Formation Depends on Speed of Ice Formation Sevanto, Sanna Holbrook, N. Michele Ball, Marilyn C. Front Plant Sci Plant Science Bubble formation in the conduits of woody plants sets a challenge for uninterrupted water transportation from the soil up to the canopy. Freezing and thawing of stems has been shown to increase the number of air-filled (embolized) conduits, especially in trees with large conduit diameters. Despite numerous experimental studies, the mechanisms leading to bubble formation during freezing have not been addressed theoretically. We used classical nucleation theory and fluid mechanics to show which mechanisms are most likely to be responsible for bubble formation during freezing and what parameters determine the likelihood of the process. Our results confirm the common assumption that bubble formation during freezing is most likely due to gas segregation by ice. If xylem conduit walls are not permeable to the salts expelled by ice during the freezing process, osmotic pressures high enough for air seeding could be created. The build-up rate of segregated solutes in front of the ice-water interface depends equally on conduit diameter and freezing velocity. Therefore, bubble formation probability depends on these variables. The dependence of bubble formation probability on freezing velocity means that the experimental results obtained for cavitation threshold conduit diameters during freeze/thaw cycles depend on the experimental setup; namely sample size and cooling rate. The velocity dependence also suggests that to avoid bubble formation during freezing trees should have narrow conduits where freezing is likely to be fast (e.g., branches or outermost layer of the xylem). Avoidance of bubble formation during freezing could thus be one piece of the explanation why xylem conduit size of temperate and boreal zone trees varies quite systematically. Frontiers Research Foundation 2012-06-06 /pmc/articles/PMC3368182/ /pubmed/22685446 http://dx.doi.org/10.3389/fpls.2012.00107 Text en Copyright © 2012 Sevanto, Holbrook and Ball. http://www.frontiersin.org/licenseagreement This is an open-access article distributed under the terms of the Creative Commons Attribution Non Commercial License, which permits non-commercial use, distribution, and reproduction in other forums, provided the original authors and source are credited. |
spellingShingle | Plant Science Sevanto, Sanna Holbrook, N. Michele Ball, Marilyn C. Freeze/Thaw-Induced Embolism: Probability of Critical Bubble Formation Depends on Speed of Ice Formation |
title | Freeze/Thaw-Induced Embolism: Probability of Critical Bubble Formation Depends on Speed of Ice Formation |
title_full | Freeze/Thaw-Induced Embolism: Probability of Critical Bubble Formation Depends on Speed of Ice Formation |
title_fullStr | Freeze/Thaw-Induced Embolism: Probability of Critical Bubble Formation Depends on Speed of Ice Formation |
title_full_unstemmed | Freeze/Thaw-Induced Embolism: Probability of Critical Bubble Formation Depends on Speed of Ice Formation |
title_short | Freeze/Thaw-Induced Embolism: Probability of Critical Bubble Formation Depends on Speed of Ice Formation |
title_sort | freeze/thaw-induced embolism: probability of critical bubble formation depends on speed of ice formation |
topic | Plant Science |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3368182/ https://www.ncbi.nlm.nih.gov/pubmed/22685446 http://dx.doi.org/10.3389/fpls.2012.00107 |
work_keys_str_mv | AT sevantosanna freezethawinducedembolismprobabilityofcriticalbubbleformationdependsonspeedoficeformation AT holbrooknmichele freezethawinducedembolismprobabilityofcriticalbubbleformationdependsonspeedoficeformation AT ballmarilync freezethawinducedembolismprobabilityofcriticalbubbleformationdependsonspeedoficeformation |