Cargando…

Fabrication and characterization of High Q polymer micro-ring resonator and its application as a sensitive ultrasonic detector

Smooth sidewall silicon micro-ring molds have been fabricated using resist reflow and thermal oxidation method. High Q factor polymer micro-ring resonators have been fabricated using these molds. Quality factors as high as 10(5) have been measured at telecommunication wavelength range. By carefully...

Descripción completa

Detalles Bibliográficos
Autores principales: Ling, Tao, Chen, Sung-Liang, Guo, L. Jay
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Optical Society of America 2011
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3368304/
https://www.ncbi.nlm.nih.gov/pubmed/21263625
http://dx.doi.org/10.1364/OE.19.000861
Descripción
Sumario:Smooth sidewall silicon micro-ring molds have been fabricated using resist reflow and thermal oxidation method. High Q factor polymer micro-ring resonators have been fabricated using these molds. Quality factors as high as 10(5) have been measured at telecommunication wavelength range. By carefully examining the different loss mechanisms in polymer micro-ring, we find that the surface scattering loss can be as low as 0.23 dB/cm, much smaller than the absorption loss of the polystyrene polymer used in our devices. When used as an ultrasound detector such a high Q polymer micro-ring device can achieve an acoustic sensitivity around 36.3 mV/kPa with 240 μW operating power. A noise equivalent pressure (NEP) is around 88 Pa over a bandwidth range of 1–75 MHz. We have improved the NEP by a factor of 3 compared to our previous best result.