Cargando…

The cadmium–mercaptoacetic acid complex contributes to the genotoxicity of mercaptoacetic acid-coated CdSe-core quantum dots

Quantum dots (QDs) have many potential clinical and biological applications because of their advantages over traditional fluorescent dyes. However, the genotoxicity potential of QDs still remains unclear. In this paper, a plasmid-based system was designed to explore the genotoxic mechanism of QDs by...

Descripción completa

Detalles Bibliográficos
Autores principales: Tang, Weikun, Fan, Junpeng, He, Yide, Huang, Bihai, Liu, Huihui, Pang, Daiwen, Xie, Zhixiong
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Dove Medical Press 2012
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3368512/
https://www.ncbi.nlm.nih.gov/pubmed/22679373
http://dx.doi.org/10.2147/IJN.S32029
_version_ 1782234963078283264
author Tang, Weikun
Fan, Junpeng
He, Yide
Huang, Bihai
Liu, Huihui
Pang, Daiwen
Xie, Zhixiong
author_facet Tang, Weikun
Fan, Junpeng
He, Yide
Huang, Bihai
Liu, Huihui
Pang, Daiwen
Xie, Zhixiong
author_sort Tang, Weikun
collection PubMed
description Quantum dots (QDs) have many potential clinical and biological applications because of their advantages over traditional fluorescent dyes. However, the genotoxicity potential of QDs still remains unclear. In this paper, a plasmid-based system was designed to explore the genotoxic mechanism of QDs by detecting changes in DNA configuration and biological activities. The direct chemicobiological interactions between DNA and mercaptoacetic acid-coated CdSecore QDs (MAA–QDs) were investigated. After incubation with different concentrations of MAA–QDs (0.043, 0.13, 0.4, 1.2, and 3.6 μmol/L) in the dark, the DNA conversion of the covalently closed circular (CCC) DNA to the open circular (OC) DNA was significantly enhanced (from 13.9% ± 2.2% to 59.9% ± 12.8%) while the residual transformation activity of plasmid DNA was greatly decreased (from 80.7% ± 12.8% to 13.6% ± 0.8%), which indicated that the damages to the DNA structure and biological activities induced by MAA–QDs were concentration-dependent. The electrospray ionization mass spectrometry data suggested that the observed genotoxicity might be correlated with the cadmium–mercaptoacetic acid complex (Cd–MAA) that is formed in the solution of MAA–QDs. Circular dichroism spectroscopy and transformation assay results indicated that the Cd–MAA complex might interact with DNA through the groove-binding mode and prefer binding to DNA fragments with high adenine and thymine content. Furthermore, the plasmid transformation assay could be used as an effective method to evaluate the genotoxicities of nanoparticles.
format Online
Article
Text
id pubmed-3368512
institution National Center for Biotechnology Information
language English
publishDate 2012
publisher Dove Medical Press
record_format MEDLINE/PubMed
spelling pubmed-33685122012-06-07 The cadmium–mercaptoacetic acid complex contributes to the genotoxicity of mercaptoacetic acid-coated CdSe-core quantum dots Tang, Weikun Fan, Junpeng He, Yide Huang, Bihai Liu, Huihui Pang, Daiwen Xie, Zhixiong Int J Nanomedicine Original Research Quantum dots (QDs) have many potential clinical and biological applications because of their advantages over traditional fluorescent dyes. However, the genotoxicity potential of QDs still remains unclear. In this paper, a plasmid-based system was designed to explore the genotoxic mechanism of QDs by detecting changes in DNA configuration and biological activities. The direct chemicobiological interactions between DNA and mercaptoacetic acid-coated CdSecore QDs (MAA–QDs) were investigated. After incubation with different concentrations of MAA–QDs (0.043, 0.13, 0.4, 1.2, and 3.6 μmol/L) in the dark, the DNA conversion of the covalently closed circular (CCC) DNA to the open circular (OC) DNA was significantly enhanced (from 13.9% ± 2.2% to 59.9% ± 12.8%) while the residual transformation activity of plasmid DNA was greatly decreased (from 80.7% ± 12.8% to 13.6% ± 0.8%), which indicated that the damages to the DNA structure and biological activities induced by MAA–QDs were concentration-dependent. The electrospray ionization mass spectrometry data suggested that the observed genotoxicity might be correlated with the cadmium–mercaptoacetic acid complex (Cd–MAA) that is formed in the solution of MAA–QDs. Circular dichroism spectroscopy and transformation assay results indicated that the Cd–MAA complex might interact with DNA through the groove-binding mode and prefer binding to DNA fragments with high adenine and thymine content. Furthermore, the plasmid transformation assay could be used as an effective method to evaluate the genotoxicities of nanoparticles. Dove Medical Press 2012 2012-05-24 /pmc/articles/PMC3368512/ /pubmed/22679373 http://dx.doi.org/10.2147/IJN.S32029 Text en © 2012 Tang et al, publisher and licensee Dove Medical Press Ltd. This is an Open Access article which permits unrestricted noncommercial use, provided the original work is properly cited.
spellingShingle Original Research
Tang, Weikun
Fan, Junpeng
He, Yide
Huang, Bihai
Liu, Huihui
Pang, Daiwen
Xie, Zhixiong
The cadmium–mercaptoacetic acid complex contributes to the genotoxicity of mercaptoacetic acid-coated CdSe-core quantum dots
title The cadmium–mercaptoacetic acid complex contributes to the genotoxicity of mercaptoacetic acid-coated CdSe-core quantum dots
title_full The cadmium–mercaptoacetic acid complex contributes to the genotoxicity of mercaptoacetic acid-coated CdSe-core quantum dots
title_fullStr The cadmium–mercaptoacetic acid complex contributes to the genotoxicity of mercaptoacetic acid-coated CdSe-core quantum dots
title_full_unstemmed The cadmium–mercaptoacetic acid complex contributes to the genotoxicity of mercaptoacetic acid-coated CdSe-core quantum dots
title_short The cadmium–mercaptoacetic acid complex contributes to the genotoxicity of mercaptoacetic acid-coated CdSe-core quantum dots
title_sort cadmium–mercaptoacetic acid complex contributes to the genotoxicity of mercaptoacetic acid-coated cdse-core quantum dots
topic Original Research
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3368512/
https://www.ncbi.nlm.nih.gov/pubmed/22679373
http://dx.doi.org/10.2147/IJN.S32029
work_keys_str_mv AT tangweikun thecadmiummercaptoaceticacidcomplexcontributestothegenotoxicityofmercaptoaceticacidcoatedcdsecorequantumdots
AT fanjunpeng thecadmiummercaptoaceticacidcomplexcontributestothegenotoxicityofmercaptoaceticacidcoatedcdsecorequantumdots
AT heyide thecadmiummercaptoaceticacidcomplexcontributestothegenotoxicityofmercaptoaceticacidcoatedcdsecorequantumdots
AT huangbihai thecadmiummercaptoaceticacidcomplexcontributestothegenotoxicityofmercaptoaceticacidcoatedcdsecorequantumdots
AT liuhuihui thecadmiummercaptoaceticacidcomplexcontributestothegenotoxicityofmercaptoaceticacidcoatedcdsecorequantumdots
AT pangdaiwen thecadmiummercaptoaceticacidcomplexcontributestothegenotoxicityofmercaptoaceticacidcoatedcdsecorequantumdots
AT xiezhixiong thecadmiummercaptoaceticacidcomplexcontributestothegenotoxicityofmercaptoaceticacidcoatedcdsecorequantumdots
AT tangweikun cadmiummercaptoaceticacidcomplexcontributestothegenotoxicityofmercaptoaceticacidcoatedcdsecorequantumdots
AT fanjunpeng cadmiummercaptoaceticacidcomplexcontributestothegenotoxicityofmercaptoaceticacidcoatedcdsecorequantumdots
AT heyide cadmiummercaptoaceticacidcomplexcontributestothegenotoxicityofmercaptoaceticacidcoatedcdsecorequantumdots
AT huangbihai cadmiummercaptoaceticacidcomplexcontributestothegenotoxicityofmercaptoaceticacidcoatedcdsecorequantumdots
AT liuhuihui cadmiummercaptoaceticacidcomplexcontributestothegenotoxicityofmercaptoaceticacidcoatedcdsecorequantumdots
AT pangdaiwen cadmiummercaptoaceticacidcomplexcontributestothegenotoxicityofmercaptoaceticacidcoatedcdsecorequantumdots
AT xiezhixiong cadmiummercaptoaceticacidcomplexcontributestothegenotoxicityofmercaptoaceticacidcoatedcdsecorequantumdots