Cargando…
Arena3D: visualizing time-driven phenotypic differences in biological systems
BACKGROUND: Elucidating the genotype-phenotype connection is one of the big challenges of modern molecular biology. To fully understand this connection, it is necessary to consider the underlying networks and the time factor. In this context of data deluge and heterogeneous information, visualizatio...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2012
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3368716/ https://www.ncbi.nlm.nih.gov/pubmed/22439608 http://dx.doi.org/10.1186/1471-2105-13-45 |
_version_ | 1782234974536073216 |
---|---|
author | Secrier, Maria Pavlopoulos, Georgios A Aerts, Jan Schneider, Reinhard |
author_facet | Secrier, Maria Pavlopoulos, Georgios A Aerts, Jan Schneider, Reinhard |
author_sort | Secrier, Maria |
collection | PubMed |
description | BACKGROUND: Elucidating the genotype-phenotype connection is one of the big challenges of modern molecular biology. To fully understand this connection, it is necessary to consider the underlying networks and the time factor. In this context of data deluge and heterogeneous information, visualization plays an essential role in interpreting complex and dynamic topologies. Thus, software that is able to bring the network, phenotypic and temporal information together is needed. Arena3D has been previously introduced as a tool that facilitates link discovery between processes. It uses a layered display to separate different levels of information while emphasizing the connections between them. We present novel developments of the tool for the visualization and analysis of dynamic genotype-phenotype landscapes. RESULTS: Version 2.0 introduces novel features that allow handling time course data in a phenotypic context. Gene expression levels or other measures can be loaded and visualized at different time points and phenotypic comparison is facilitated through clustering and correlation display or highlighting of impacting changes through time. Similarity scoring allows the identification of global patterns in dynamic heterogeneous data. In this paper we demonstrate the utility of the tool on two distinct biological problems of different scales. First, we analyze a medium scale dataset that looks at perturbation effects of the pluripotency regulator Nanog in murine embryonic stem cells. Dynamic cluster analysis suggests alternative indirect links between Nanog and other proteins in the core stem cell network. Moreover, recurrent correlations from the epigenetic to the translational level are identified. Second, we investigate a large scale dataset consisting of genome-wide knockdown screens for human genes essential in the mitotic process. Here, a potential new role for the gene lsm14a in cytokinesis is suggested. We also show how phenotypic patterning allows for extensive comparison and identification of high impact knockdown targets. CONCLUSIONS: We present a new visualization approach for perturbation screens with multiple phenotypic outcomes. The novel functionality implemented in Arena3D enables effective understanding and comparison of temporal patterns within morphological layers, to help with the system-wide analysis of dynamic processes. Arena3D is available free of charge for academics as a downloadable standalone application from: http://arena3d.org/. |
format | Online Article Text |
id | pubmed-3368716 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2012 |
publisher | BioMed Central |
record_format | MEDLINE/PubMed |
spelling | pubmed-33687162012-06-07 Arena3D: visualizing time-driven phenotypic differences in biological systems Secrier, Maria Pavlopoulos, Georgios A Aerts, Jan Schneider, Reinhard BMC Bioinformatics Software BACKGROUND: Elucidating the genotype-phenotype connection is one of the big challenges of modern molecular biology. To fully understand this connection, it is necessary to consider the underlying networks and the time factor. In this context of data deluge and heterogeneous information, visualization plays an essential role in interpreting complex and dynamic topologies. Thus, software that is able to bring the network, phenotypic and temporal information together is needed. Arena3D has been previously introduced as a tool that facilitates link discovery between processes. It uses a layered display to separate different levels of information while emphasizing the connections between them. We present novel developments of the tool for the visualization and analysis of dynamic genotype-phenotype landscapes. RESULTS: Version 2.0 introduces novel features that allow handling time course data in a phenotypic context. Gene expression levels or other measures can be loaded and visualized at different time points and phenotypic comparison is facilitated through clustering and correlation display or highlighting of impacting changes through time. Similarity scoring allows the identification of global patterns in dynamic heterogeneous data. In this paper we demonstrate the utility of the tool on two distinct biological problems of different scales. First, we analyze a medium scale dataset that looks at perturbation effects of the pluripotency regulator Nanog in murine embryonic stem cells. Dynamic cluster analysis suggests alternative indirect links between Nanog and other proteins in the core stem cell network. Moreover, recurrent correlations from the epigenetic to the translational level are identified. Second, we investigate a large scale dataset consisting of genome-wide knockdown screens for human genes essential in the mitotic process. Here, a potential new role for the gene lsm14a in cytokinesis is suggested. We also show how phenotypic patterning allows for extensive comparison and identification of high impact knockdown targets. CONCLUSIONS: We present a new visualization approach for perturbation screens with multiple phenotypic outcomes. The novel functionality implemented in Arena3D enables effective understanding and comparison of temporal patterns within morphological layers, to help with the system-wide analysis of dynamic processes. Arena3D is available free of charge for academics as a downloadable standalone application from: http://arena3d.org/. BioMed Central 2012-03-22 /pmc/articles/PMC3368716/ /pubmed/22439608 http://dx.doi.org/10.1186/1471-2105-13-45 Text en Copyright ©2012 Secrier et al; licensee BioMed Central Ltd. http://creativecommons.org/licenses/by/2.0 This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Software Secrier, Maria Pavlopoulos, Georgios A Aerts, Jan Schneider, Reinhard Arena3D: visualizing time-driven phenotypic differences in biological systems |
title | Arena3D: visualizing time-driven phenotypic differences in biological systems |
title_full | Arena3D: visualizing time-driven phenotypic differences in biological systems |
title_fullStr | Arena3D: visualizing time-driven phenotypic differences in biological systems |
title_full_unstemmed | Arena3D: visualizing time-driven phenotypic differences in biological systems |
title_short | Arena3D: visualizing time-driven phenotypic differences in biological systems |
title_sort | arena3d: visualizing time-driven phenotypic differences in biological systems |
topic | Software |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3368716/ https://www.ncbi.nlm.nih.gov/pubmed/22439608 http://dx.doi.org/10.1186/1471-2105-13-45 |
work_keys_str_mv | AT secriermaria arena3dvisualizingtimedrivenphenotypicdifferencesinbiologicalsystems AT pavlopoulosgeorgiosa arena3dvisualizingtimedrivenphenotypicdifferencesinbiologicalsystems AT aertsjan arena3dvisualizingtimedrivenphenotypicdifferencesinbiologicalsystems AT schneiderreinhard arena3dvisualizingtimedrivenphenotypicdifferencesinbiologicalsystems |