Cargando…

Quantum transport simulations of graphene nanoribbon devices using Dirac equation calibrated with tight-binding π-bond model

We present an efficient approach to study the carrier transport in graphene nanoribbon (GNR) devices using the non-equilibrium Green's function approach (NEGF) based on the Dirac equation calibrated to the tight-binding π-bond model for graphene. The approach has the advantage of the computatio...

Descripción completa

Detalles Bibliográficos
Autores principales: Chin, Sai-Kong, Lam, Kai-Tak, Seah, Dawei, Liang, Gengchiau
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Springer 2012
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3368727/
https://www.ncbi.nlm.nih.gov/pubmed/22325480
http://dx.doi.org/10.1186/1556-276X-7-114
Descripción
Sumario:We present an efficient approach to study the carrier transport in graphene nanoribbon (GNR) devices using the non-equilibrium Green's function approach (NEGF) based on the Dirac equation calibrated to the tight-binding π-bond model for graphene. The approach has the advantage of the computational efficiency of the Dirac equation and still captures sufficient quantitative details of the bandstructure from the tight-binding π-bond model for graphene. We demonstrate how the exact self-energies due to the leads can be calculated in the NEGF-Dirac model. We apply our approach to GNR systems of different widths subjecting to different potential profiles to characterize their device physics. Specifically, the validity and accuracy of our approach will be demonstrated by benchmarking the density of states and transmissions characteristics with that of the more expensive transport calculations for the tight-binding π-bond model.