Cargando…

Structural analysis of eyespots: dynamics of morphogenic signals that govern elemental positions in butterfly wings

BACKGROUND: To explain eyespot colour-pattern determination in butterfly wings, the induction model has been discussed based on colour-pattern analyses of various butterfly eyespots. However, a detailed structural analysis of eyespots that can serve as a foundation for future studies is still lackin...

Descripción completa

Detalles Bibliográficos
Autor principal: Otaki, Joji M
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2012
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3368778/
https://www.ncbi.nlm.nih.gov/pubmed/22409965
http://dx.doi.org/10.1186/1752-0509-6-17
_version_ 1782234988732743680
author Otaki, Joji M
author_facet Otaki, Joji M
author_sort Otaki, Joji M
collection PubMed
description BACKGROUND: To explain eyespot colour-pattern determination in butterfly wings, the induction model has been discussed based on colour-pattern analyses of various butterfly eyespots. However, a detailed structural analysis of eyespots that can serve as a foundation for future studies is still lacking. In this study, fundamental structural rules related to butterfly eyespots are proposed, and the induction model is elaborated in terms of the possible dynamics of morphogenic signals involved in the development of eyespots and parafocal elements (PFEs) based on colour-pattern analysis of the nymphalid butterfly Junonia almana. RESULTS: In a well-developed eyespot, the inner black core ring is much wider than the outer black ring; this is termed the inside-wide rule. It appears that signals are wider near the focus of the eyespot and become narrower as they expand. Although fundamental signal dynamics are likely to be based on a reaction-diffusion mechanism, they were described well mathematically as a type of simple uniformly decelerated motion in which signals associated with the outer and inner black rings of eyespots and PFEs are released at different time points, durations, intervals, and initial velocities into a two-dimensional field of fundamentally uniform or graded resistance; this produces eyespots and PFEs that are diverse in size and structure. The inside-wide rule, eyespot distortion, structural differences between small and large eyespots, and structural changes in eyespots and PFEs in response to physiological treatments were explained well using mathematical simulations. Natural colour patterns and previous experimental findings that are not easily explained by the conventional gradient model were also explained reasonably well by the formal mathematical simulations performed in this study. CONCLUSIONS: In a mode free from speculative molecular interactions, the present study clarifies fundamental structural rules related to butterfly eyespots, delineates a theoretical basis for the induction model, and proposes a mathematically simple mode of long-range signalling that may reflect developmental mechanisms associated with butterfly eyespots.
format Online
Article
Text
id pubmed-3368778
institution National Center for Biotechnology Information
language English
publishDate 2012
publisher BioMed Central
record_format MEDLINE/PubMed
spelling pubmed-33687782012-06-07 Structural analysis of eyespots: dynamics of morphogenic signals that govern elemental positions in butterfly wings Otaki, Joji M BMC Syst Biol Research Article BACKGROUND: To explain eyespot colour-pattern determination in butterfly wings, the induction model has been discussed based on colour-pattern analyses of various butterfly eyespots. However, a detailed structural analysis of eyespots that can serve as a foundation for future studies is still lacking. In this study, fundamental structural rules related to butterfly eyespots are proposed, and the induction model is elaborated in terms of the possible dynamics of morphogenic signals involved in the development of eyespots and parafocal elements (PFEs) based on colour-pattern analysis of the nymphalid butterfly Junonia almana. RESULTS: In a well-developed eyespot, the inner black core ring is much wider than the outer black ring; this is termed the inside-wide rule. It appears that signals are wider near the focus of the eyespot and become narrower as they expand. Although fundamental signal dynamics are likely to be based on a reaction-diffusion mechanism, they were described well mathematically as a type of simple uniformly decelerated motion in which signals associated with the outer and inner black rings of eyespots and PFEs are released at different time points, durations, intervals, and initial velocities into a two-dimensional field of fundamentally uniform or graded resistance; this produces eyespots and PFEs that are diverse in size and structure. The inside-wide rule, eyespot distortion, structural differences between small and large eyespots, and structural changes in eyespots and PFEs in response to physiological treatments were explained well using mathematical simulations. Natural colour patterns and previous experimental findings that are not easily explained by the conventional gradient model were also explained reasonably well by the formal mathematical simulations performed in this study. CONCLUSIONS: In a mode free from speculative molecular interactions, the present study clarifies fundamental structural rules related to butterfly eyespots, delineates a theoretical basis for the induction model, and proposes a mathematically simple mode of long-range signalling that may reflect developmental mechanisms associated with butterfly eyespots. BioMed Central 2012-03-13 /pmc/articles/PMC3368778/ /pubmed/22409965 http://dx.doi.org/10.1186/1752-0509-6-17 Text en Copyright ©2012 Otaki; licensee BioMed Central Ltd. http://creativecommons.org/licenses/by/2.0 This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
spellingShingle Research Article
Otaki, Joji M
Structural analysis of eyespots: dynamics of morphogenic signals that govern elemental positions in butterfly wings
title Structural analysis of eyespots: dynamics of morphogenic signals that govern elemental positions in butterfly wings
title_full Structural analysis of eyespots: dynamics of morphogenic signals that govern elemental positions in butterfly wings
title_fullStr Structural analysis of eyespots: dynamics of morphogenic signals that govern elemental positions in butterfly wings
title_full_unstemmed Structural analysis of eyespots: dynamics of morphogenic signals that govern elemental positions in butterfly wings
title_short Structural analysis of eyespots: dynamics of morphogenic signals that govern elemental positions in butterfly wings
title_sort structural analysis of eyespots: dynamics of morphogenic signals that govern elemental positions in butterfly wings
topic Research Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3368778/
https://www.ncbi.nlm.nih.gov/pubmed/22409965
http://dx.doi.org/10.1186/1752-0509-6-17
work_keys_str_mv AT otakijojim structuralanalysisofeyespotsdynamicsofmorphogenicsignalsthatgovernelementalpositionsinbutterflywings