Cargando…

Structural Drift: The Population Dynamics of Sequential Learning

We introduce a theory of sequential causal inference in which learners in a chain estimate a structural model from their upstream “teacher” and then pass samples from the model to their downstream “student”. It extends the population dynamics of genetic drift, recasting Kimura's selectively neu...

Descripción completa

Detalles Bibliográficos
Autores principales: Crutchfield, James P., Whalen, Sean
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2012
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3369870/
https://www.ncbi.nlm.nih.gov/pubmed/22685387
http://dx.doi.org/10.1371/journal.pcbi.1002510
Descripción
Sumario:We introduce a theory of sequential causal inference in which learners in a chain estimate a structural model from their upstream “teacher” and then pass samples from the model to their downstream “student”. It extends the population dynamics of genetic drift, recasting Kimura's selectively neutral theory as a special case of a generalized drift process using structured populations with memory. We examine the diffusion and fixation properties of several drift processes and propose applications to learning, inference, and evolution. We also demonstrate how the organization of drift process space controls fidelity, facilitates innovations, and leads to information loss in sequential learning with and without memory.