Cargando…
Integrative Approach to Pain Genetics Identifies Pain Sensitivity Loci across Diseases
Identifying human genes relevant for the processing of pain requires difficult-to-conduct and expensive large-scale clinical trials. Here, we examine a novel integrative paradigm for data-driven discovery of pain gene candidates, taking advantage of the vast amount of existing disease-related clinic...
Autores principales: | , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2012
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3369906/ https://www.ncbi.nlm.nih.gov/pubmed/22685391 http://dx.doi.org/10.1371/journal.pcbi.1002538 |
_version_ | 1782235105684619264 |
---|---|
author | Ruau, David Dudley, Joel T. Chen, Rong Phillips, Nicholas G. Swan, Gary E. Lazzeroni, Laura C. Clark, J. David Butte, Atul J. Angst, Martin S. |
author_facet | Ruau, David Dudley, Joel T. Chen, Rong Phillips, Nicholas G. Swan, Gary E. Lazzeroni, Laura C. Clark, J. David Butte, Atul J. Angst, Martin S. |
author_sort | Ruau, David |
collection | PubMed |
description | Identifying human genes relevant for the processing of pain requires difficult-to-conduct and expensive large-scale clinical trials. Here, we examine a novel integrative paradigm for data-driven discovery of pain gene candidates, taking advantage of the vast amount of existing disease-related clinical literature and gene expression microarray data stored in large international repositories. First, thousands of diseases were ranked according to a disease-specific pain index (DSPI), derived from Medical Subject Heading (MESH) annotations in MEDLINE. Second, gene expression profiles of 121 of these human diseases were obtained from public sources. Third, genes with expression variation significantly correlated with DSPI across diseases were selected as candidate pain genes. Finally, selected candidate pain genes were genotyped in an independent human cohort and prospectively evaluated for significant association between variants and measures of pain sensitivity. The strongest signal was with rs4512126 (5q32, ABLIM3, P = 1.3×10(−10)) for the sensitivity to cold pressor pain in males, but not in females. Significant associations were also observed with rs12548828, rs7826700 and rs1075791 on 8q22.2 within NCALD (P = 1.7×10(−4), 1.8×10(−4), and 2.2×10(−4) respectively). Our results demonstrate the utility of a novel paradigm that integrates publicly available disease-specific gene expression data with clinical data curated from MEDLINE to facilitate the discovery of pain-relevant genes. This data-derived list of pain gene candidates enables additional focused and efficient biological studies validating additional candidates. |
format | Online Article Text |
id | pubmed-3369906 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2012 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-33699062012-06-08 Integrative Approach to Pain Genetics Identifies Pain Sensitivity Loci across Diseases Ruau, David Dudley, Joel T. Chen, Rong Phillips, Nicholas G. Swan, Gary E. Lazzeroni, Laura C. Clark, J. David Butte, Atul J. Angst, Martin S. PLoS Comput Biol Research Article Identifying human genes relevant for the processing of pain requires difficult-to-conduct and expensive large-scale clinical trials. Here, we examine a novel integrative paradigm for data-driven discovery of pain gene candidates, taking advantage of the vast amount of existing disease-related clinical literature and gene expression microarray data stored in large international repositories. First, thousands of diseases were ranked according to a disease-specific pain index (DSPI), derived from Medical Subject Heading (MESH) annotations in MEDLINE. Second, gene expression profiles of 121 of these human diseases were obtained from public sources. Third, genes with expression variation significantly correlated with DSPI across diseases were selected as candidate pain genes. Finally, selected candidate pain genes were genotyped in an independent human cohort and prospectively evaluated for significant association between variants and measures of pain sensitivity. The strongest signal was with rs4512126 (5q32, ABLIM3, P = 1.3×10(−10)) for the sensitivity to cold pressor pain in males, but not in females. Significant associations were also observed with rs12548828, rs7826700 and rs1075791 on 8q22.2 within NCALD (P = 1.7×10(−4), 1.8×10(−4), and 2.2×10(−4) respectively). Our results demonstrate the utility of a novel paradigm that integrates publicly available disease-specific gene expression data with clinical data curated from MEDLINE to facilitate the discovery of pain-relevant genes. This data-derived list of pain gene candidates enables additional focused and efficient biological studies validating additional candidates. Public Library of Science 2012-06-07 /pmc/articles/PMC3369906/ /pubmed/22685391 http://dx.doi.org/10.1371/journal.pcbi.1002538 Text en This is an open-access article, free of all copyright, and may be freely reproduced, distributed, transmitted, modified, built upon, or otherwise used by anyone for any lawful purpose. The work is made available under the Creative Commons CC0 public domain dedication. https://creativecommons.org/publicdomain/zero/1.0/ This is an open-access article distributed under the terms of the Creative Commons Public Domain declaration, which stipulates that, once placed in the public domain, this work may be freely reproduced, distributed, transmitted, modified, built upon, or otherwise used by anyone for any lawful purpose. |
spellingShingle | Research Article Ruau, David Dudley, Joel T. Chen, Rong Phillips, Nicholas G. Swan, Gary E. Lazzeroni, Laura C. Clark, J. David Butte, Atul J. Angst, Martin S. Integrative Approach to Pain Genetics Identifies Pain Sensitivity Loci across Diseases |
title | Integrative Approach to Pain Genetics Identifies Pain Sensitivity Loci across Diseases |
title_full | Integrative Approach to Pain Genetics Identifies Pain Sensitivity Loci across Diseases |
title_fullStr | Integrative Approach to Pain Genetics Identifies Pain Sensitivity Loci across Diseases |
title_full_unstemmed | Integrative Approach to Pain Genetics Identifies Pain Sensitivity Loci across Diseases |
title_short | Integrative Approach to Pain Genetics Identifies Pain Sensitivity Loci across Diseases |
title_sort | integrative approach to pain genetics identifies pain sensitivity loci across diseases |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3369906/ https://www.ncbi.nlm.nih.gov/pubmed/22685391 http://dx.doi.org/10.1371/journal.pcbi.1002538 |
work_keys_str_mv | AT ruaudavid integrativeapproachtopaingeneticsidentifiespainsensitivitylociacrossdiseases AT dudleyjoelt integrativeapproachtopaingeneticsidentifiespainsensitivitylociacrossdiseases AT chenrong integrativeapproachtopaingeneticsidentifiespainsensitivitylociacrossdiseases AT phillipsnicholasg integrativeapproachtopaingeneticsidentifiespainsensitivitylociacrossdiseases AT swangarye integrativeapproachtopaingeneticsidentifiespainsensitivitylociacrossdiseases AT lazzeronilaurac integrativeapproachtopaingeneticsidentifiespainsensitivitylociacrossdiseases AT clarkjdavid integrativeapproachtopaingeneticsidentifiespainsensitivitylociacrossdiseases AT butteatulj integrativeapproachtopaingeneticsidentifiespainsensitivitylociacrossdiseases AT angstmartins integrativeapproachtopaingeneticsidentifiespainsensitivitylociacrossdiseases |