Cargando…
A Maximum Entropy Test for Evaluating Higher-Order Correlations in Spike Counts
Evaluating the importance of higher-order correlations of neural spike counts has been notoriously hard. A large number of samples are typically required in order to estimate higher-order correlations and resulting information theoretic quantities. In typical electrophysiology data sets with many ex...
Autores principales: | Onken, Arno, Dragoi, Valentin, Obermayer, Klaus |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2012
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3369943/ https://www.ncbi.nlm.nih.gov/pubmed/22685392 http://dx.doi.org/10.1371/journal.pcbi.1002539 |
Ejemplares similares
-
Analyzing Short-Term Noise Dependencies of Spike-Counts in Macaque Prefrontal Cortex Using Copulas and the Flashlight Transformation
por: Onken, Arno, et al.
Publicado: (2009) -
Testing for higher-order correlations in massively parallel spike trains
por: Staude, Benjamin, et al.
Publicado: (2007) -
Reading-out task variables as a low-dimensional reconstruction of neural spike trains in single trials
por: Koren, Veronika, et al.
Publicado: (2019) -
A Moment-Based Maximum Entropy Model for Fitting Higher-Order Interactions in Neural Data
por: Cayco-Gajic, N. Alex, et al.
Publicado: (2018) -
Design Method for a Higher Order Extended Kalman Filter Based on Maximum Correlation Entropy and a Taylor Network System
por: Wang, Qiupeng, et al.
Publicado: (2021)