Cargando…
Estuarine and early-marine survival of transported and in-river migrant Snake River spring Chinook salmon smolts
Many juvenile Snake River Chinook salmon are transported downriver to avoid hydroelectric dams in the Columbia River basin. As mortality to the final dam is ∼50%, transported fish should return as adults at roughly double the rate of nontransported fish; however, the benefit of transportation has no...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group
2012
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3371587/ https://www.ncbi.nlm.nih.gov/pubmed/22690317 http://dx.doi.org/10.1038/srep00448 |
_version_ | 1782235229504667648 |
---|---|
author | Rechisky, Erin L. Welch, David W. Porter, Aswea D. Jacobs-Scott, Melinda C. Winchell, Paul M. McKern, John L. |
author_facet | Rechisky, Erin L. Welch, David W. Porter, Aswea D. Jacobs-Scott, Melinda C. Winchell, Paul M. McKern, John L. |
author_sort | Rechisky, Erin L. |
collection | PubMed |
description | Many juvenile Snake River Chinook salmon are transported downriver to avoid hydroelectric dams in the Columbia River basin. As mortality to the final dam is ∼50%, transported fish should return as adults at roughly double the rate of nontransported fish; however, the benefit of transportation has not been realized consistently. “Delayed” mortality caused by transportation-induced stress is one hypothesis to explain reduced returns of transported fish. Differential timing of ocean entry is another. We used a large-scale acoustic telemetry array to test whether survival of transported juvenile spring Chinook is reduced relative to in-river migrant control groups after synchronizing ocean entry timing. During the initial 750 km, 1 month long migration after release, we found no evidence of decreased estuarine or ocean survival of transported groups; therefore, decreased survival to adulthood for transported Chinook is likely caused by factors other than delayed effects of transportation, such as earlier ocean entry. |
format | Online Article Text |
id | pubmed-3371587 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2012 |
publisher | Nature Publishing Group |
record_format | MEDLINE/PubMed |
spelling | pubmed-33715872012-06-11 Estuarine and early-marine survival of transported and in-river migrant Snake River spring Chinook salmon smolts Rechisky, Erin L. Welch, David W. Porter, Aswea D. Jacobs-Scott, Melinda C. Winchell, Paul M. McKern, John L. Sci Rep Article Many juvenile Snake River Chinook salmon are transported downriver to avoid hydroelectric dams in the Columbia River basin. As mortality to the final dam is ∼50%, transported fish should return as adults at roughly double the rate of nontransported fish; however, the benefit of transportation has not been realized consistently. “Delayed” mortality caused by transportation-induced stress is one hypothesis to explain reduced returns of transported fish. Differential timing of ocean entry is another. We used a large-scale acoustic telemetry array to test whether survival of transported juvenile spring Chinook is reduced relative to in-river migrant control groups after synchronizing ocean entry timing. During the initial 750 km, 1 month long migration after release, we found no evidence of decreased estuarine or ocean survival of transported groups; therefore, decreased survival to adulthood for transported Chinook is likely caused by factors other than delayed effects of transportation, such as earlier ocean entry. Nature Publishing Group 2012-06-11 /pmc/articles/PMC3371587/ /pubmed/22690317 http://dx.doi.org/10.1038/srep00448 Text en Copyright © 2012, Macmillan Publishers Limited. All rights reserved http://creativecommons.org/licenses/by-nc-sa/3.0/ This work is licensed under a Creative Commons Attribution-NonCommercial-ShareALike 3.0 Unported License. To view a copy of this license, visit http://creativecommons.org/licenses/by-nc-sa/3.0/ |
spellingShingle | Article Rechisky, Erin L. Welch, David W. Porter, Aswea D. Jacobs-Scott, Melinda C. Winchell, Paul M. McKern, John L. Estuarine and early-marine survival of transported and in-river migrant Snake River spring Chinook salmon smolts |
title | Estuarine and early-marine survival of transported and in-river migrant Snake River spring Chinook salmon smolts |
title_full | Estuarine and early-marine survival of transported and in-river migrant Snake River spring Chinook salmon smolts |
title_fullStr | Estuarine and early-marine survival of transported and in-river migrant Snake River spring Chinook salmon smolts |
title_full_unstemmed | Estuarine and early-marine survival of transported and in-river migrant Snake River spring Chinook salmon smolts |
title_short | Estuarine and early-marine survival of transported and in-river migrant Snake River spring Chinook salmon smolts |
title_sort | estuarine and early-marine survival of transported and in-river migrant snake river spring chinook salmon smolts |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3371587/ https://www.ncbi.nlm.nih.gov/pubmed/22690317 http://dx.doi.org/10.1038/srep00448 |
work_keys_str_mv | AT rechiskyerinl estuarineandearlymarinesurvivaloftransportedandinrivermigrantsnakeriverspringchinooksalmonsmolts AT welchdavidw estuarineandearlymarinesurvivaloftransportedandinrivermigrantsnakeriverspringchinooksalmonsmolts AT porteraswead estuarineandearlymarinesurvivaloftransportedandinrivermigrantsnakeriverspringchinooksalmonsmolts AT jacobsscottmelindac estuarineandearlymarinesurvivaloftransportedandinrivermigrantsnakeriverspringchinooksalmonsmolts AT winchellpaulm estuarineandearlymarinesurvivaloftransportedandinrivermigrantsnakeriverspringchinooksalmonsmolts AT mckernjohnl estuarineandearlymarinesurvivaloftransportedandinrivermigrantsnakeriverspringchinooksalmonsmolts |