Cargando…
The evolution of African great ape subtelomeric heterochromatin and the fusion of human chromosome 2
Chimpanzee and gorilla chromosomes differ from human chromosomes by the presence of large blocks of subterminal heterochromatin thought to be composed primarily of arrays of tandem satellite sequence. We explore their sequence composition and organization and show a complex organization composed of...
Autores principales: | , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Cold Spring Harbor Laboratory Press
2012
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3371704/ https://www.ncbi.nlm.nih.gov/pubmed/22419167 http://dx.doi.org/10.1101/gr.136556.111 |
_version_ | 1782235242582507520 |
---|---|
author | Ventura, Mario Catacchio, Claudia R. Sajjadian, Saba Vives, Laura Sudmant, Peter H. Marques-Bonet, Tomas Graves, Tina A. Wilson, Richard K. Eichler, Evan E. |
author_facet | Ventura, Mario Catacchio, Claudia R. Sajjadian, Saba Vives, Laura Sudmant, Peter H. Marques-Bonet, Tomas Graves, Tina A. Wilson, Richard K. Eichler, Evan E. |
author_sort | Ventura, Mario |
collection | PubMed |
description | Chimpanzee and gorilla chromosomes differ from human chromosomes by the presence of large blocks of subterminal heterochromatin thought to be composed primarily of arrays of tandem satellite sequence. We explore their sequence composition and organization and show a complex organization composed of specific sets of segmental duplications that have hyperexpanded in concert with the formation of subterminal satellites. These regions are highly copy number polymorphic between and within species, and copy number differences involving hundreds of copies can be accurately estimated by assaying read-depth of next-generation sequencing data sets. Phylogenetic and comparative genomic analyses suggest that the structures have arisen largely independently in the two lineages with the exception of a few seed sequences present in the common ancestor of humans and African apes. We propose a model where an ancestral human-chimpanzee pericentric inversion and the ancestral chromosome 2 fusion both predisposed and protected the chimpanzee and human genomes, respectively, to the formation of subtelomeric heterochromatin. Our findings highlight the complex interplay between duplicated sequences and chromosomal rearrangements that rapidly alter the cytogenetic landscape in a short period of evolutionary time. |
format | Online Article Text |
id | pubmed-3371704 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2012 |
publisher | Cold Spring Harbor Laboratory Press |
record_format | MEDLINE/PubMed |
spelling | pubmed-33717042012-12-01 The evolution of African great ape subtelomeric heterochromatin and the fusion of human chromosome 2 Ventura, Mario Catacchio, Claudia R. Sajjadian, Saba Vives, Laura Sudmant, Peter H. Marques-Bonet, Tomas Graves, Tina A. Wilson, Richard K. Eichler, Evan E. Genome Res Research Chimpanzee and gorilla chromosomes differ from human chromosomes by the presence of large blocks of subterminal heterochromatin thought to be composed primarily of arrays of tandem satellite sequence. We explore their sequence composition and organization and show a complex organization composed of specific sets of segmental duplications that have hyperexpanded in concert with the formation of subterminal satellites. These regions are highly copy number polymorphic between and within species, and copy number differences involving hundreds of copies can be accurately estimated by assaying read-depth of next-generation sequencing data sets. Phylogenetic and comparative genomic analyses suggest that the structures have arisen largely independently in the two lineages with the exception of a few seed sequences present in the common ancestor of humans and African apes. We propose a model where an ancestral human-chimpanzee pericentric inversion and the ancestral chromosome 2 fusion both predisposed and protected the chimpanzee and human genomes, respectively, to the formation of subtelomeric heterochromatin. Our findings highlight the complex interplay between duplicated sequences and chromosomal rearrangements that rapidly alter the cytogenetic landscape in a short period of evolutionary time. Cold Spring Harbor Laboratory Press 2012-06 /pmc/articles/PMC3371704/ /pubmed/22419167 http://dx.doi.org/10.1101/gr.136556.111 Text en © 2012, Published by Cold Spring Harbor Laboratory Press This article is distributed exclusively by Cold Spring Harbor Laboratory Press for the first six months after the full-issue publication date (see http://genome.cshlp.org/site/misc/terms.xhtml). After six months, it is available under a Creative Commons License (Attribution-NonCommercial 3.0 Unported License), as described at http://creativecommons.org/licenses/by-nc/3.0/. |
spellingShingle | Research Ventura, Mario Catacchio, Claudia R. Sajjadian, Saba Vives, Laura Sudmant, Peter H. Marques-Bonet, Tomas Graves, Tina A. Wilson, Richard K. Eichler, Evan E. The evolution of African great ape subtelomeric heterochromatin and the fusion of human chromosome 2 |
title | The evolution of African great ape subtelomeric heterochromatin and the fusion of human chromosome 2 |
title_full | The evolution of African great ape subtelomeric heterochromatin and the fusion of human chromosome 2 |
title_fullStr | The evolution of African great ape subtelomeric heterochromatin and the fusion of human chromosome 2 |
title_full_unstemmed | The evolution of African great ape subtelomeric heterochromatin and the fusion of human chromosome 2 |
title_short | The evolution of African great ape subtelomeric heterochromatin and the fusion of human chromosome 2 |
title_sort | evolution of african great ape subtelomeric heterochromatin and the fusion of human chromosome 2 |
topic | Research |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3371704/ https://www.ncbi.nlm.nih.gov/pubmed/22419167 http://dx.doi.org/10.1101/gr.136556.111 |
work_keys_str_mv | AT venturamario theevolutionofafricangreatapesubtelomericheterochromatinandthefusionofhumanchromosome2 AT catacchioclaudiar theevolutionofafricangreatapesubtelomericheterochromatinandthefusionofhumanchromosome2 AT sajjadiansaba theevolutionofafricangreatapesubtelomericheterochromatinandthefusionofhumanchromosome2 AT viveslaura theevolutionofafricangreatapesubtelomericheterochromatinandthefusionofhumanchromosome2 AT sudmantpeterh theevolutionofafricangreatapesubtelomericheterochromatinandthefusionofhumanchromosome2 AT marquesbonettomas theevolutionofafricangreatapesubtelomericheterochromatinandthefusionofhumanchromosome2 AT gravestinaa theevolutionofafricangreatapesubtelomericheterochromatinandthefusionofhumanchromosome2 AT wilsonrichardk theevolutionofafricangreatapesubtelomericheterochromatinandthefusionofhumanchromosome2 AT eichlerevane theevolutionofafricangreatapesubtelomericheterochromatinandthefusionofhumanchromosome2 AT venturamario evolutionofafricangreatapesubtelomericheterochromatinandthefusionofhumanchromosome2 AT catacchioclaudiar evolutionofafricangreatapesubtelomericheterochromatinandthefusionofhumanchromosome2 AT sajjadiansaba evolutionofafricangreatapesubtelomericheterochromatinandthefusionofhumanchromosome2 AT viveslaura evolutionofafricangreatapesubtelomericheterochromatinandthefusionofhumanchromosome2 AT sudmantpeterh evolutionofafricangreatapesubtelomericheterochromatinandthefusionofhumanchromosome2 AT marquesbonettomas evolutionofafricangreatapesubtelomericheterochromatinandthefusionofhumanchromosome2 AT gravestinaa evolutionofafricangreatapesubtelomericheterochromatinandthefusionofhumanchromosome2 AT wilsonrichardk evolutionofafricangreatapesubtelomericheterochromatinandthefusionofhumanchromosome2 AT eichlerevane evolutionofafricangreatapesubtelomericheterochromatinandthefusionofhumanchromosome2 |