Cargando…
Nonparametric Bayesian inference for perturbed and orthologous gene regulatory networks
Motivation: The generation of time series transcriptomic datasets collected under multiple experimental conditions has proven to be a powerful approach for disentangling complex biological processes, allowing for the reverse engineering of gene regulatory networks (GRNs). Most methods for reverse en...
Autores principales: | Penfold, Christopher A., Buchanan-Wollaston, Vicky, Denby, Katherine J., Wild, David L. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2012
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3371854/ https://www.ncbi.nlm.nih.gov/pubmed/22689766 http://dx.doi.org/10.1093/bioinformatics/bts222 |
Ejemplares similares
-
Recognition models to predict DNA-binding specificities of homeodomain proteins
por: Christensen, Ryan G., et al.
Publicado: (2012) -
Statistical model-based testing to evaluate the recurrence of genomic aberrations
por: Niida, Atushi, et al.
Publicado: (2012) -
Lineage-based identification of cellular states and expression programs
por: Hashimoto, Tatsunori, et al.
Publicado: (2012) -
Matching experiments across species using expression values and textual information
por: Wise, Aaron, et al.
Publicado: (2012) -
NOrMAL: accurate nucleosome positioning using a modified Gaussian mixture model
por: Polishko, Anton, et al.
Publicado: (2012)