Cargando…
Multiple Imputation in Survival Models: Applied on Breast Cancer Data
BACKGROUND: Missing data is a common problem in cancer research. While simple methods such as completecase (C-C) analysis are commonly employed for handling this problem, several studies have shown that these methods led to biased estimates. We aim to address the methodological issues in development...
Autores principales: | Baneshi, M R, Talei, A R |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Kowsar
2011
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3371994/ https://www.ncbi.nlm.nih.gov/pubmed/22737525 |
Ejemplares similares
-
Assessment of Internal Validity of Prognostic Models through Bootstrapping and Multiple Imputation of Missing Data
por: Baneshi, MR, et al.
Publicado: (2012) -
Does the Missing Data Imputation Method Affect the Composition and Performance of Prognostic Models?
por: Baneshi, M R, et al.
Publicado: (2012) -
Selection of Variables that Influence Drug Injection in Prison: Comparison of Methods with Multiple Imputed Data Sets
por: Haji-Maghsoudi, Saiedeh, et al.
Publicado: (2014) -
Multiple imputation using chained equations for missing data in survival models: applied to multidrug-resistant tuberculosis and HIV data
por: Mbona, Sizwe Vincent, et al.
Publicado: (2023) -
Prediction of Breast Cancer Survival by Machine Learning Methods: An Application of Multiple Imputation
por: LOTFNEZHAD AFSHAR, Hadi, et al.
Publicado: (2021)