Cargando…
Does the Missing Data Imputation Method Affect the Composition and Performance of Prognostic Models?
BACKGROUND: We already showed the superiority of imputation of missing data (via Multivariable Imputation via Chained Equations (MICE) method) over exclusion of them; however, the methodology of MICE is complicated. Furthermore, easier imputation methods are available. The aim of this study was to c...
Autores principales: | Baneshi, M R, Talei, A R |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Kowsar
2012
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3372019/ https://www.ncbi.nlm.nih.gov/pubmed/22737551 |
Ejemplares similares
-
Assessment of Internal Validity of Prognostic Models through Bootstrapping and Multiple Imputation of Missing Data
por: Baneshi, MR, et al.
Publicado: (2012) -
Multiple Imputation in Survival Models: Applied on Breast Cancer Data
por: Baneshi, M R, et al.
Publicado: (2011) -
Missing Data and Imputation Methods
por: Schober, Patrick, et al.
Publicado: (2020) -
Imputation methods for missing data for polygenic models
por: Fridley, Brooke, et al.
Publicado: (2003) -
Imputing missing genotypes: effects of methods and patterns of missing data
por: Ogut, Funda, et al.
Publicado: (2011)