Cargando…
Inferring transcript phylogenies
Alternative splicing, an unknown mechanism 20 years ago, is now recognized as a major mechanism for proteome and transcriptome diversity, particularly in mammals--some researchers conjecture that up to 90% of human genes are alternatively spliced. Despite much research on exon and intron evolution,...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2012
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3372451/ https://www.ncbi.nlm.nih.gov/pubmed/22831154 http://dx.doi.org/10.1186/1471-2105-13-S9-S1 |
Sumario: | Alternative splicing, an unknown mechanism 20 years ago, is now recognized as a major mechanism for proteome and transcriptome diversity, particularly in mammals--some researchers conjecture that up to 90% of human genes are alternatively spliced. Despite much research on exon and intron evolution, little is known about the evolution of transcripts. In this paper, we present a model of transcript evolution and an associated algorithm to reconstruct transcript phylogenies. The evolution of the gene structure--exons and introns--is used as basis for the reconstruction of transcript phylogenies. We apply our model and reconstruction algorithm on two well-studied genes, MAG and PAX6, obtaining results consistent with current knowledge and thereby providing evidence that a phylogenetic analysis of transcripts is feasible and likely to be informative. |
---|