Cargando…
Lck, Membrane Microdomains, and TCR Triggering Machinery: Defining the New Rules of Engagement
In spite of a comprehensive understanding of the schematics of T cell receptor (TCR) signaling, the mechanisms regulating compartmentalization of signaling molecules, their transient interactions, and rearrangement of membrane structures initiated upon TCR engagement remain an outstanding problem. T...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Research Foundation
2012
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3372939/ https://www.ncbi.nlm.nih.gov/pubmed/22701458 http://dx.doi.org/10.3389/fimmu.2012.00155 |
_version_ | 1782235387206303744 |
---|---|
author | Filipp, Dominik Ballek, Ondrej Manning, Jasper |
author_facet | Filipp, Dominik Ballek, Ondrej Manning, Jasper |
author_sort | Filipp, Dominik |
collection | PubMed |
description | In spite of a comprehensive understanding of the schematics of T cell receptor (TCR) signaling, the mechanisms regulating compartmentalization of signaling molecules, their transient interactions, and rearrangement of membrane structures initiated upon TCR engagement remain an outstanding problem. These gaps in our knowledge are exemplified by recent data demonstrating that TCR triggering is largely dependent on a preactivated pool of Lck concentrated in T cells in a specific type of membrane microdomains. Our current model posits that in resting T cells all critical components of TCR triggering machinery including TCR/CD3, Lck, Fyn, CD45, PAG, and LAT are associated with distinct types of lipid-based microdomains which represent the smallest structural and functional units of membrane confinement able to negatively control enzymatic activities and substrate availability that is required for the initiation of TCR signaling. In addition, the microdomains based segregation spatially limits the interaction of components of TCR triggering machinery prior to the onset of TCR signaling and allows their rapid communication and signal amplification after TCR engagement, via the process of their coalescence. Microdomains mediated compartmentalization thus represents an essential membrane organizing principle in resting T cells. The integration of these structural and functional aspects of signaling into a unified model of TCR triggering will require a deeper understanding of membrane biology, novel interdisciplinary approaches and the generation of specific reagents. We believe that the fully integrated model of TCR signaling must be based on membrane structural network which provides a proper environment for regulatory processes controlling TCR triggering. |
format | Online Article Text |
id | pubmed-3372939 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2012 |
publisher | Frontiers Research Foundation |
record_format | MEDLINE/PubMed |
spelling | pubmed-33729392012-06-14 Lck, Membrane Microdomains, and TCR Triggering Machinery: Defining the New Rules of Engagement Filipp, Dominik Ballek, Ondrej Manning, Jasper Front Immunol Immunology In spite of a comprehensive understanding of the schematics of T cell receptor (TCR) signaling, the mechanisms regulating compartmentalization of signaling molecules, their transient interactions, and rearrangement of membrane structures initiated upon TCR engagement remain an outstanding problem. These gaps in our knowledge are exemplified by recent data demonstrating that TCR triggering is largely dependent on a preactivated pool of Lck concentrated in T cells in a specific type of membrane microdomains. Our current model posits that in resting T cells all critical components of TCR triggering machinery including TCR/CD3, Lck, Fyn, CD45, PAG, and LAT are associated with distinct types of lipid-based microdomains which represent the smallest structural and functional units of membrane confinement able to negatively control enzymatic activities and substrate availability that is required for the initiation of TCR signaling. In addition, the microdomains based segregation spatially limits the interaction of components of TCR triggering machinery prior to the onset of TCR signaling and allows their rapid communication and signal amplification after TCR engagement, via the process of their coalescence. Microdomains mediated compartmentalization thus represents an essential membrane organizing principle in resting T cells. The integration of these structural and functional aspects of signaling into a unified model of TCR triggering will require a deeper understanding of membrane biology, novel interdisciplinary approaches and the generation of specific reagents. We believe that the fully integrated model of TCR signaling must be based on membrane structural network which provides a proper environment for regulatory processes controlling TCR triggering. Frontiers Research Foundation 2012-06-12 /pmc/articles/PMC3372939/ /pubmed/22701458 http://dx.doi.org/10.3389/fimmu.2012.00155 Text en Copyright © 2012 Filipp, Ballek and Manning. http://www.frontiersin.org/licenseagreement This is an open-access article distributed under the terms of the Creative Commons Attribution Non Commercial License, which permits non-commercial use, distribution, and reproduction in other forums, provided the original authors and source are credited. |
spellingShingle | Immunology Filipp, Dominik Ballek, Ondrej Manning, Jasper Lck, Membrane Microdomains, and TCR Triggering Machinery: Defining the New Rules of Engagement |
title | Lck, Membrane Microdomains, and TCR Triggering Machinery: Defining the New Rules of Engagement |
title_full | Lck, Membrane Microdomains, and TCR Triggering Machinery: Defining the New Rules of Engagement |
title_fullStr | Lck, Membrane Microdomains, and TCR Triggering Machinery: Defining the New Rules of Engagement |
title_full_unstemmed | Lck, Membrane Microdomains, and TCR Triggering Machinery: Defining the New Rules of Engagement |
title_short | Lck, Membrane Microdomains, and TCR Triggering Machinery: Defining the New Rules of Engagement |
title_sort | lck, membrane microdomains, and tcr triggering machinery: defining the new rules of engagement |
topic | Immunology |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3372939/ https://www.ncbi.nlm.nih.gov/pubmed/22701458 http://dx.doi.org/10.3389/fimmu.2012.00155 |
work_keys_str_mv | AT filippdominik lckmembranemicrodomainsandtcrtriggeringmachinerydefiningthenewrulesofengagement AT ballekondrej lckmembranemicrodomainsandtcrtriggeringmachinerydefiningthenewrulesofengagement AT manningjasper lckmembranemicrodomainsandtcrtriggeringmachinerydefiningthenewrulesofengagement |