Cargando…

Conformational Differences between Active Angiotensins and Their Inactive Precursors

The peptide conformation in the context of a protein polypeptide chain is influenced by proximal amino acid residues. However, the mechanisms of this interference remain poorly understood. We studied the conformation of angiotensins 1, 2 and 3, which are produced naturally in a sequential fashion fr...

Descripción completa

Detalles Bibliográficos
Autores principales: Solopova, O.N., Pozdnyakova, L.P., Varlamov, N.E., Bokov, M.N., Morozkina, E.V., Yagudin, Т.А., Sveshnikov, P.G.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: A.I. Gordeyev 2012
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3372989/
https://www.ncbi.nlm.nih.gov/pubmed/22708065
Descripción
Sumario:The peptide conformation in the context of a protein polypeptide chain is influenced by proximal amino acid residues. However, the mechanisms of this interference remain poorly understood. We studied the conformation of angiotensins 1, 2 and 3, which are produced naturally in a sequential fashion from a precursor protein angiotensinogen and contain an identical peptide core structure. Using the example of angiotensins 1, 2 and 3, it was shown that similar amino acid sequences may have significant conformational differences in various molecules. In order to assess the conformational changes, we developed a panel of high-affinity mouse monoclonal antibodies against angiotensins 1, 2 and 3 and studied their cross-reactivity in indirect and competitive ELISAs. It was found that the conformations of inactive angiotensin1 and the corresponding fragment of angiotensinogen are similar; the same is true for the conformations of active angiotensins 2 and 3, whereas the conformations of homologous fragments in the active and inactive angiotensins differ significantly.