Cargando…
Carbon nanotubes impregnated with subventricular zone neural progenitor cells promotes recovery from stroke
The present in vivo study was conducted to evaluate whether hydrophilic (HL) or hydrophobic (HP) carbon nanotubes (CNTs) impregnated with subventricular zone neural progenitor cells (SVZ NPCs) could repair damaged neural tissue following stroke. For this purpose, stroke damaged rats were transplante...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Dove Medical Press
2012
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3373297/ https://www.ncbi.nlm.nih.gov/pubmed/22701320 http://dx.doi.org/10.2147/IJN.S30273 |
_version_ | 1782235436005982208 |
---|---|
author | Moon, Sung Ung Kim, Jihee Bokara, Kiran Kumar Kim, Jong Youl Khang, Dongwoo Webster, Thomas J Lee, Jong Eun |
author_facet | Moon, Sung Ung Kim, Jihee Bokara, Kiran Kumar Kim, Jong Youl Khang, Dongwoo Webster, Thomas J Lee, Jong Eun |
author_sort | Moon, Sung Ung |
collection | PubMed |
description | The present in vivo study was conducted to evaluate whether hydrophilic (HL) or hydrophobic (HP) carbon nanotubes (CNTs) impregnated with subventricular zone neural progenitor cells (SVZ NPCs) could repair damaged neural tissue following stroke. For this purpose, stroke damaged rats were transplanted with HL CNT-SVZ NPCs, HP CNT-SVZ NPCs, or SVZ NPCs alone for 1, 3, 5, and 8 weeks. Results showed that the HP CNT-SVZ NPC transplants improved rat behavior and reduced infarct cyst volume and infarct cyst area compared with the experimental control and the HL CNT-SVZ NPC and SVZ NPCs alone groups. The transplantation groups showed an increase in the expression of nestin (cell stemness marker) and proliferation which was evident with the increased number of doublecortin and bromodeoxyuridine double-stained immunopositive cells around the lesion site. But, these effects were more prominent in the HP CNT-SVZ NPC group compared with the other transplantation groups. The HP CNT-SVZ NPC and HL CNT-SVZ NPC transplants increased the number of microtubule-associated protein 2 (marker for neurons) and decreased the number of glial fibrillary acidic protein (marker for astroglial cells) positive cells within the injury epicenter. The majority of the transplanted HP CNT-SVZ NPCs collectively broadened around the ischemic injured region and the SVZ NPCs differentiated into mature neurons, attained the synapse morphology (TUJ1, synaptophysin), and decreased microglial activation (CD11b/c [OX-42]). For these reasons, this study provided the first evidence that CNTs can improve stem cell differentiation to heal stroke damage and, thus, deserve further attention. |
format | Online Article Text |
id | pubmed-3373297 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2012 |
publisher | Dove Medical Press |
record_format | MEDLINE/PubMed |
spelling | pubmed-33732972012-06-13 Carbon nanotubes impregnated with subventricular zone neural progenitor cells promotes recovery from stroke Moon, Sung Ung Kim, Jihee Bokara, Kiran Kumar Kim, Jong Youl Khang, Dongwoo Webster, Thomas J Lee, Jong Eun Int J Nanomedicine Original Research The present in vivo study was conducted to evaluate whether hydrophilic (HL) or hydrophobic (HP) carbon nanotubes (CNTs) impregnated with subventricular zone neural progenitor cells (SVZ NPCs) could repair damaged neural tissue following stroke. For this purpose, stroke damaged rats were transplanted with HL CNT-SVZ NPCs, HP CNT-SVZ NPCs, or SVZ NPCs alone for 1, 3, 5, and 8 weeks. Results showed that the HP CNT-SVZ NPC transplants improved rat behavior and reduced infarct cyst volume and infarct cyst area compared with the experimental control and the HL CNT-SVZ NPC and SVZ NPCs alone groups. The transplantation groups showed an increase in the expression of nestin (cell stemness marker) and proliferation which was evident with the increased number of doublecortin and bromodeoxyuridine double-stained immunopositive cells around the lesion site. But, these effects were more prominent in the HP CNT-SVZ NPC group compared with the other transplantation groups. The HP CNT-SVZ NPC and HL CNT-SVZ NPC transplants increased the number of microtubule-associated protein 2 (marker for neurons) and decreased the number of glial fibrillary acidic protein (marker for astroglial cells) positive cells within the injury epicenter. The majority of the transplanted HP CNT-SVZ NPCs collectively broadened around the ischemic injured region and the SVZ NPCs differentiated into mature neurons, attained the synapse morphology (TUJ1, synaptophysin), and decreased microglial activation (CD11b/c [OX-42]). For these reasons, this study provided the first evidence that CNTs can improve stem cell differentiation to heal stroke damage and, thus, deserve further attention. Dove Medical Press 2012 2012-06-01 /pmc/articles/PMC3373297/ /pubmed/22701320 http://dx.doi.org/10.2147/IJN.S30273 Text en © 2012 Moon et al, publisher and licensee Dove Medical Press Ltd This is an Open Access article which permits unrestricted noncommercial use, provided the original work is properly cited. |
spellingShingle | Original Research Moon, Sung Ung Kim, Jihee Bokara, Kiran Kumar Kim, Jong Youl Khang, Dongwoo Webster, Thomas J Lee, Jong Eun Carbon nanotubes impregnated with subventricular zone neural progenitor cells promotes recovery from stroke |
title | Carbon nanotubes impregnated with subventricular zone neural progenitor cells promotes recovery from stroke |
title_full | Carbon nanotubes impregnated with subventricular zone neural progenitor cells promotes recovery from stroke |
title_fullStr | Carbon nanotubes impregnated with subventricular zone neural progenitor cells promotes recovery from stroke |
title_full_unstemmed | Carbon nanotubes impregnated with subventricular zone neural progenitor cells promotes recovery from stroke |
title_short | Carbon nanotubes impregnated with subventricular zone neural progenitor cells promotes recovery from stroke |
title_sort | carbon nanotubes impregnated with subventricular zone neural progenitor cells promotes recovery from stroke |
topic | Original Research |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3373297/ https://www.ncbi.nlm.nih.gov/pubmed/22701320 http://dx.doi.org/10.2147/IJN.S30273 |
work_keys_str_mv | AT moonsungung carbonnanotubesimpregnatedwithsubventricularzoneneuralprogenitorcellspromotesrecoveryfromstroke AT kimjihee carbonnanotubesimpregnatedwithsubventricularzoneneuralprogenitorcellspromotesrecoveryfromstroke AT bokarakirankumar carbonnanotubesimpregnatedwithsubventricularzoneneuralprogenitorcellspromotesrecoveryfromstroke AT kimjongyoul carbonnanotubesimpregnatedwithsubventricularzoneneuralprogenitorcellspromotesrecoveryfromstroke AT khangdongwoo carbonnanotubesimpregnatedwithsubventricularzoneneuralprogenitorcellspromotesrecoveryfromstroke AT websterthomasj carbonnanotubesimpregnatedwithsubventricularzoneneuralprogenitorcellspromotesrecoveryfromstroke AT leejongeun carbonnanotubesimpregnatedwithsubventricularzoneneuralprogenitorcellspromotesrecoveryfromstroke |