Cargando…

Prediction model to estimate presence of coronary artery disease: retrospective pooled analysis of existing cohorts

Objectives To develop prediction models that better estimate the pretest probability of coronary artery disease in low prevalence populations. Design Retrospective pooled analysis of individual patient data. Setting 18 hospitals in Europe and the United States. Participants Patients with stable ches...

Descripción completa

Detalles Bibliográficos
Autores principales: Genders, Tessa S S, Steyerberg, Ewout W, Hunink, M G Myriam, Nieman, Koen, Galema, Tjebbe W, Mollet, Nico R, de Feyter, Pim J, Krestin, Gabriel P, Alkadhi, Hatem, Leschka, Sebastian, Desbiolles, Lotus, Meijs, Matthijs F L, Cramer, Maarten J, Knuuti, Juhani, Kajander, Sami, Bogaert, Jan, Goetschalckx, Kaatje, Cademartiri, Filippo, Maffei, Erica, Martini, Chiara, Seitun, Sara, Aldrovandi, Annachiara, Wildermuth, Simon, Stinn, Björn, Fornaro, Jürgen, Feuchtner, Gudrun, De Zordo, Tobias, Auer, Thomas, Plank, Fabian, Friedrich, Guy, Pugliese, Francesca, Petersen, Steffen E, Davies, L Ceri, Schoepf, U Joseph, Rowe, Garrett W, van Mieghem, Carlos A G, van Driessche, Luc, Sinitsyn, Valentin, Gopalan, Deepa, Nikolaou, Konstantin, Bamberg, Fabian, Cury, Ricardo C, Battle, Juan, Maurovich-Horvat, Pál, Bartykowszki, Andrea, Merkely, Bela, Becker, Dávid, Hadamitzky, Martin, Hausleiter, Jörg, Dewey, Marc, Zimmermann, Elke, Laule, Michael
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BMJ Publishing Group Ltd. 2012
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3374026/
https://www.ncbi.nlm.nih.gov/pubmed/22692650
http://dx.doi.org/10.1136/bmj.e3485
_version_ 1782235590386778112
author Genders, Tessa S S
Steyerberg, Ewout W
Hunink, M G Myriam
Nieman, Koen
Galema, Tjebbe W
Mollet, Nico R
de Feyter, Pim J
Krestin, Gabriel P
Alkadhi, Hatem
Leschka, Sebastian
Desbiolles, Lotus
Meijs, Matthijs F L
Cramer, Maarten J
Knuuti, Juhani
Kajander, Sami
Bogaert, Jan
Goetschalckx, Kaatje
Cademartiri, Filippo
Maffei, Erica
Martini, Chiara
Seitun, Sara
Aldrovandi, Annachiara
Wildermuth, Simon
Stinn, Björn
Fornaro, Jürgen
Feuchtner, Gudrun
De Zordo, Tobias
Auer, Thomas
Plank, Fabian
Friedrich, Guy
Pugliese, Francesca
Petersen, Steffen E
Davies, L Ceri
Schoepf, U Joseph
Rowe, Garrett W
van Mieghem, Carlos A G
van Driessche, Luc
Sinitsyn, Valentin
Gopalan, Deepa
Nikolaou, Konstantin
Bamberg, Fabian
Cury, Ricardo C
Battle, Juan
Maurovich-Horvat, Pál
Bartykowszki, Andrea
Merkely, Bela
Becker, Dávid
Hadamitzky, Martin
Hausleiter, Jörg
Dewey, Marc
Zimmermann, Elke
Laule, Michael
author_facet Genders, Tessa S S
Steyerberg, Ewout W
Hunink, M G Myriam
Nieman, Koen
Galema, Tjebbe W
Mollet, Nico R
de Feyter, Pim J
Krestin, Gabriel P
Alkadhi, Hatem
Leschka, Sebastian
Desbiolles, Lotus
Meijs, Matthijs F L
Cramer, Maarten J
Knuuti, Juhani
Kajander, Sami
Bogaert, Jan
Goetschalckx, Kaatje
Cademartiri, Filippo
Maffei, Erica
Martini, Chiara
Seitun, Sara
Aldrovandi, Annachiara
Wildermuth, Simon
Stinn, Björn
Fornaro, Jürgen
Feuchtner, Gudrun
De Zordo, Tobias
Auer, Thomas
Plank, Fabian
Friedrich, Guy
Pugliese, Francesca
Petersen, Steffen E
Davies, L Ceri
Schoepf, U Joseph
Rowe, Garrett W
van Mieghem, Carlos A G
van Driessche, Luc
Sinitsyn, Valentin
Gopalan, Deepa
Nikolaou, Konstantin
Bamberg, Fabian
Cury, Ricardo C
Battle, Juan
Maurovich-Horvat, Pál
Bartykowszki, Andrea
Merkely, Bela
Becker, Dávid
Hadamitzky, Martin
Hausleiter, Jörg
Dewey, Marc
Zimmermann, Elke
Laule, Michael
author_sort Genders, Tessa S S
collection PubMed
description Objectives To develop prediction models that better estimate the pretest probability of coronary artery disease in low prevalence populations. Design Retrospective pooled analysis of individual patient data. Setting 18 hospitals in Europe and the United States. Participants Patients with stable chest pain without evidence for previous coronary artery disease, if they were referred for computed tomography (CT) based coronary angiography or catheter based coronary angiography (indicated as low and high prevalence settings, respectively). Main outcome measures Obstructive coronary artery disease (≥50% diameter stenosis in at least one vessel found on catheter based coronary angiography). Multiple imputation accounted for missing predictors and outcomes, exploiting strong correlation between the two angiography procedures. Predictive models included a basic model (age, sex, symptoms, and setting), clinical model (basic model factors and diabetes, hypertension, dyslipidaemia, and smoking), and extended model (clinical model factors and use of the CT based coronary calcium score). We assessed discrimination (c statistic), calibration, and continuous net reclassification improvement by cross validation for the four largest low prevalence datasets separately and the smaller remaining low prevalence datasets combined. Results We included 5677 patients (3283 men, 2394 women), of whom 1634 had obstructive coronary artery disease found on catheter based coronary angiography. All potential predictors were significantly associated with the presence of disease in univariable and multivariable analyses. The clinical model improved the prediction, compared with the basic model (cross validated c statistic improvement from 0.77 to 0.79, net reclassification improvement 35%); the coronary calcium score in the extended model was a major predictor (0.79 to 0.88, 102%). Calibration for low prevalence datasets was satisfactory. Conclusions Updated prediction models including age, sex, symptoms, and cardiovascular risk factors allow for accurate estimation of the pretest probability of coronary artery disease in low prevalence populations. Addition of coronary calcium scores to the prediction models improves the estimates.
format Online
Article
Text
id pubmed-3374026
institution National Center for Biotechnology Information
language English
publishDate 2012
publisher BMJ Publishing Group Ltd.
record_format MEDLINE/PubMed
spelling pubmed-33740262012-06-14 Prediction model to estimate presence of coronary artery disease: retrospective pooled analysis of existing cohorts Genders, Tessa S S Steyerberg, Ewout W Hunink, M G Myriam Nieman, Koen Galema, Tjebbe W Mollet, Nico R de Feyter, Pim J Krestin, Gabriel P Alkadhi, Hatem Leschka, Sebastian Desbiolles, Lotus Meijs, Matthijs F L Cramer, Maarten J Knuuti, Juhani Kajander, Sami Bogaert, Jan Goetschalckx, Kaatje Cademartiri, Filippo Maffei, Erica Martini, Chiara Seitun, Sara Aldrovandi, Annachiara Wildermuth, Simon Stinn, Björn Fornaro, Jürgen Feuchtner, Gudrun De Zordo, Tobias Auer, Thomas Plank, Fabian Friedrich, Guy Pugliese, Francesca Petersen, Steffen E Davies, L Ceri Schoepf, U Joseph Rowe, Garrett W van Mieghem, Carlos A G van Driessche, Luc Sinitsyn, Valentin Gopalan, Deepa Nikolaou, Konstantin Bamberg, Fabian Cury, Ricardo C Battle, Juan Maurovich-Horvat, Pál Bartykowszki, Andrea Merkely, Bela Becker, Dávid Hadamitzky, Martin Hausleiter, Jörg Dewey, Marc Zimmermann, Elke Laule, Michael BMJ Research Objectives To develop prediction models that better estimate the pretest probability of coronary artery disease in low prevalence populations. Design Retrospective pooled analysis of individual patient data. Setting 18 hospitals in Europe and the United States. Participants Patients with stable chest pain without evidence for previous coronary artery disease, if they were referred for computed tomography (CT) based coronary angiography or catheter based coronary angiography (indicated as low and high prevalence settings, respectively). Main outcome measures Obstructive coronary artery disease (≥50% diameter stenosis in at least one vessel found on catheter based coronary angiography). Multiple imputation accounted for missing predictors and outcomes, exploiting strong correlation between the two angiography procedures. Predictive models included a basic model (age, sex, symptoms, and setting), clinical model (basic model factors and diabetes, hypertension, dyslipidaemia, and smoking), and extended model (clinical model factors and use of the CT based coronary calcium score). We assessed discrimination (c statistic), calibration, and continuous net reclassification improvement by cross validation for the four largest low prevalence datasets separately and the smaller remaining low prevalence datasets combined. Results We included 5677 patients (3283 men, 2394 women), of whom 1634 had obstructive coronary artery disease found on catheter based coronary angiography. All potential predictors were significantly associated with the presence of disease in univariable and multivariable analyses. The clinical model improved the prediction, compared with the basic model (cross validated c statistic improvement from 0.77 to 0.79, net reclassification improvement 35%); the coronary calcium score in the extended model was a major predictor (0.79 to 0.88, 102%). Calibration for low prevalence datasets was satisfactory. Conclusions Updated prediction models including age, sex, symptoms, and cardiovascular risk factors allow for accurate estimation of the pretest probability of coronary artery disease in low prevalence populations. Addition of coronary calcium scores to the prediction models improves the estimates. BMJ Publishing Group Ltd. 2012-06-12 /pmc/articles/PMC3374026/ /pubmed/22692650 http://dx.doi.org/10.1136/bmj.e3485 Text en © Genders et al 2012 This is an open-access article distributed under the terms of the Creative Commons Attribution Non-commercial License, which permits use, distribution, and reproduction in any medium, provided the original work is properly cited, the use is non commercial and is otherwise in compliance with the license. See: http://creativecommons.org/licenses/by-nc/2.0/ and http://creativecommons.org/licenses/by-nc/2.0/legalcode.
spellingShingle Research
Genders, Tessa S S
Steyerberg, Ewout W
Hunink, M G Myriam
Nieman, Koen
Galema, Tjebbe W
Mollet, Nico R
de Feyter, Pim J
Krestin, Gabriel P
Alkadhi, Hatem
Leschka, Sebastian
Desbiolles, Lotus
Meijs, Matthijs F L
Cramer, Maarten J
Knuuti, Juhani
Kajander, Sami
Bogaert, Jan
Goetschalckx, Kaatje
Cademartiri, Filippo
Maffei, Erica
Martini, Chiara
Seitun, Sara
Aldrovandi, Annachiara
Wildermuth, Simon
Stinn, Björn
Fornaro, Jürgen
Feuchtner, Gudrun
De Zordo, Tobias
Auer, Thomas
Plank, Fabian
Friedrich, Guy
Pugliese, Francesca
Petersen, Steffen E
Davies, L Ceri
Schoepf, U Joseph
Rowe, Garrett W
van Mieghem, Carlos A G
van Driessche, Luc
Sinitsyn, Valentin
Gopalan, Deepa
Nikolaou, Konstantin
Bamberg, Fabian
Cury, Ricardo C
Battle, Juan
Maurovich-Horvat, Pál
Bartykowszki, Andrea
Merkely, Bela
Becker, Dávid
Hadamitzky, Martin
Hausleiter, Jörg
Dewey, Marc
Zimmermann, Elke
Laule, Michael
Prediction model to estimate presence of coronary artery disease: retrospective pooled analysis of existing cohorts
title Prediction model to estimate presence of coronary artery disease: retrospective pooled analysis of existing cohorts
title_full Prediction model to estimate presence of coronary artery disease: retrospective pooled analysis of existing cohorts
title_fullStr Prediction model to estimate presence of coronary artery disease: retrospective pooled analysis of existing cohorts
title_full_unstemmed Prediction model to estimate presence of coronary artery disease: retrospective pooled analysis of existing cohorts
title_short Prediction model to estimate presence of coronary artery disease: retrospective pooled analysis of existing cohorts
title_sort prediction model to estimate presence of coronary artery disease: retrospective pooled analysis of existing cohorts
topic Research
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3374026/
https://www.ncbi.nlm.nih.gov/pubmed/22692650
http://dx.doi.org/10.1136/bmj.e3485
work_keys_str_mv AT genderstessass predictionmodeltoestimatepresenceofcoronaryarterydiseaseretrospectivepooledanalysisofexistingcohorts
AT steyerbergewoutw predictionmodeltoestimatepresenceofcoronaryarterydiseaseretrospectivepooledanalysisofexistingcohorts
AT huninkmgmyriam predictionmodeltoestimatepresenceofcoronaryarterydiseaseretrospectivepooledanalysisofexistingcohorts
AT niemankoen predictionmodeltoestimatepresenceofcoronaryarterydiseaseretrospectivepooledanalysisofexistingcohorts
AT galematjebbew predictionmodeltoestimatepresenceofcoronaryarterydiseaseretrospectivepooledanalysisofexistingcohorts
AT molletnicor predictionmodeltoestimatepresenceofcoronaryarterydiseaseretrospectivepooledanalysisofexistingcohorts
AT defeyterpimj predictionmodeltoestimatepresenceofcoronaryarterydiseaseretrospectivepooledanalysisofexistingcohorts
AT krestingabrielp predictionmodeltoestimatepresenceofcoronaryarterydiseaseretrospectivepooledanalysisofexistingcohorts
AT alkadhihatem predictionmodeltoestimatepresenceofcoronaryarterydiseaseretrospectivepooledanalysisofexistingcohorts
AT leschkasebastian predictionmodeltoestimatepresenceofcoronaryarterydiseaseretrospectivepooledanalysisofexistingcohorts
AT desbiolleslotus predictionmodeltoestimatepresenceofcoronaryarterydiseaseretrospectivepooledanalysisofexistingcohorts
AT meijsmatthijsfl predictionmodeltoestimatepresenceofcoronaryarterydiseaseretrospectivepooledanalysisofexistingcohorts
AT cramermaartenj predictionmodeltoestimatepresenceofcoronaryarterydiseaseretrospectivepooledanalysisofexistingcohorts
AT knuutijuhani predictionmodeltoestimatepresenceofcoronaryarterydiseaseretrospectivepooledanalysisofexistingcohorts
AT kajandersami predictionmodeltoestimatepresenceofcoronaryarterydiseaseretrospectivepooledanalysisofexistingcohorts
AT bogaertjan predictionmodeltoestimatepresenceofcoronaryarterydiseaseretrospectivepooledanalysisofexistingcohorts
AT goetschalckxkaatje predictionmodeltoestimatepresenceofcoronaryarterydiseaseretrospectivepooledanalysisofexistingcohorts
AT cademartirifilippo predictionmodeltoestimatepresenceofcoronaryarterydiseaseretrospectivepooledanalysisofexistingcohorts
AT maffeierica predictionmodeltoestimatepresenceofcoronaryarterydiseaseretrospectivepooledanalysisofexistingcohorts
AT martinichiara predictionmodeltoestimatepresenceofcoronaryarterydiseaseretrospectivepooledanalysisofexistingcohorts
AT seitunsara predictionmodeltoestimatepresenceofcoronaryarterydiseaseretrospectivepooledanalysisofexistingcohorts
AT aldrovandiannachiara predictionmodeltoestimatepresenceofcoronaryarterydiseaseretrospectivepooledanalysisofexistingcohorts
AT wildermuthsimon predictionmodeltoestimatepresenceofcoronaryarterydiseaseretrospectivepooledanalysisofexistingcohorts
AT stinnbjorn predictionmodeltoestimatepresenceofcoronaryarterydiseaseretrospectivepooledanalysisofexistingcohorts
AT fornarojurgen predictionmodeltoestimatepresenceofcoronaryarterydiseaseretrospectivepooledanalysisofexistingcohorts
AT feuchtnergudrun predictionmodeltoestimatepresenceofcoronaryarterydiseaseretrospectivepooledanalysisofexistingcohorts
AT dezordotobias predictionmodeltoestimatepresenceofcoronaryarterydiseaseretrospectivepooledanalysisofexistingcohorts
AT auerthomas predictionmodeltoestimatepresenceofcoronaryarterydiseaseretrospectivepooledanalysisofexistingcohorts
AT plankfabian predictionmodeltoestimatepresenceofcoronaryarterydiseaseretrospectivepooledanalysisofexistingcohorts
AT friedrichguy predictionmodeltoestimatepresenceofcoronaryarterydiseaseretrospectivepooledanalysisofexistingcohorts
AT pugliesefrancesca predictionmodeltoestimatepresenceofcoronaryarterydiseaseretrospectivepooledanalysisofexistingcohorts
AT petersensteffene predictionmodeltoestimatepresenceofcoronaryarterydiseaseretrospectivepooledanalysisofexistingcohorts
AT davieslceri predictionmodeltoestimatepresenceofcoronaryarterydiseaseretrospectivepooledanalysisofexistingcohorts
AT schoepfujoseph predictionmodeltoestimatepresenceofcoronaryarterydiseaseretrospectivepooledanalysisofexistingcohorts
AT rowegarrettw predictionmodeltoestimatepresenceofcoronaryarterydiseaseretrospectivepooledanalysisofexistingcohorts
AT vanmieghemcarlosag predictionmodeltoestimatepresenceofcoronaryarterydiseaseretrospectivepooledanalysisofexistingcohorts
AT vandriesscheluc predictionmodeltoestimatepresenceofcoronaryarterydiseaseretrospectivepooledanalysisofexistingcohorts
AT sinitsynvalentin predictionmodeltoestimatepresenceofcoronaryarterydiseaseretrospectivepooledanalysisofexistingcohorts
AT gopalandeepa predictionmodeltoestimatepresenceofcoronaryarterydiseaseretrospectivepooledanalysisofexistingcohorts
AT nikolaoukonstantin predictionmodeltoestimatepresenceofcoronaryarterydiseaseretrospectivepooledanalysisofexistingcohorts
AT bambergfabian predictionmodeltoestimatepresenceofcoronaryarterydiseaseretrospectivepooledanalysisofexistingcohorts
AT curyricardoc predictionmodeltoestimatepresenceofcoronaryarterydiseaseretrospectivepooledanalysisofexistingcohorts
AT battlejuan predictionmodeltoestimatepresenceofcoronaryarterydiseaseretrospectivepooledanalysisofexistingcohorts
AT maurovichhorvatpal predictionmodeltoestimatepresenceofcoronaryarterydiseaseretrospectivepooledanalysisofexistingcohorts
AT bartykowszkiandrea predictionmodeltoestimatepresenceofcoronaryarterydiseaseretrospectivepooledanalysisofexistingcohorts
AT merkelybela predictionmodeltoestimatepresenceofcoronaryarterydiseaseretrospectivepooledanalysisofexistingcohorts
AT beckerdavid predictionmodeltoestimatepresenceofcoronaryarterydiseaseretrospectivepooledanalysisofexistingcohorts
AT hadamitzkymartin predictionmodeltoestimatepresenceofcoronaryarterydiseaseretrospectivepooledanalysisofexistingcohorts
AT hausleiterjorg predictionmodeltoestimatepresenceofcoronaryarterydiseaseretrospectivepooledanalysisofexistingcohorts
AT deweymarc predictionmodeltoestimatepresenceofcoronaryarterydiseaseretrospectivepooledanalysisofexistingcohorts
AT zimmermannelke predictionmodeltoestimatepresenceofcoronaryarterydiseaseretrospectivepooledanalysisofexistingcohorts
AT laulemichael predictionmodeltoestimatepresenceofcoronaryarterydiseaseretrospectivepooledanalysisofexistingcohorts