Cargando…
Prediction model to estimate presence of coronary artery disease: retrospective pooled analysis of existing cohorts
Objectives To develop prediction models that better estimate the pretest probability of coronary artery disease in low prevalence populations. Design Retrospective pooled analysis of individual patient data. Setting 18 hospitals in Europe and the United States. Participants Patients with stable ches...
Autores principales: | , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BMJ Publishing Group Ltd.
2012
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3374026/ https://www.ncbi.nlm.nih.gov/pubmed/22692650 http://dx.doi.org/10.1136/bmj.e3485 |
_version_ | 1782235590386778112 |
---|---|
author | Genders, Tessa S S Steyerberg, Ewout W Hunink, M G Myriam Nieman, Koen Galema, Tjebbe W Mollet, Nico R de Feyter, Pim J Krestin, Gabriel P Alkadhi, Hatem Leschka, Sebastian Desbiolles, Lotus Meijs, Matthijs F L Cramer, Maarten J Knuuti, Juhani Kajander, Sami Bogaert, Jan Goetschalckx, Kaatje Cademartiri, Filippo Maffei, Erica Martini, Chiara Seitun, Sara Aldrovandi, Annachiara Wildermuth, Simon Stinn, Björn Fornaro, Jürgen Feuchtner, Gudrun De Zordo, Tobias Auer, Thomas Plank, Fabian Friedrich, Guy Pugliese, Francesca Petersen, Steffen E Davies, L Ceri Schoepf, U Joseph Rowe, Garrett W van Mieghem, Carlos A G van Driessche, Luc Sinitsyn, Valentin Gopalan, Deepa Nikolaou, Konstantin Bamberg, Fabian Cury, Ricardo C Battle, Juan Maurovich-Horvat, Pál Bartykowszki, Andrea Merkely, Bela Becker, Dávid Hadamitzky, Martin Hausleiter, Jörg Dewey, Marc Zimmermann, Elke Laule, Michael |
author_facet | Genders, Tessa S S Steyerberg, Ewout W Hunink, M G Myriam Nieman, Koen Galema, Tjebbe W Mollet, Nico R de Feyter, Pim J Krestin, Gabriel P Alkadhi, Hatem Leschka, Sebastian Desbiolles, Lotus Meijs, Matthijs F L Cramer, Maarten J Knuuti, Juhani Kajander, Sami Bogaert, Jan Goetschalckx, Kaatje Cademartiri, Filippo Maffei, Erica Martini, Chiara Seitun, Sara Aldrovandi, Annachiara Wildermuth, Simon Stinn, Björn Fornaro, Jürgen Feuchtner, Gudrun De Zordo, Tobias Auer, Thomas Plank, Fabian Friedrich, Guy Pugliese, Francesca Petersen, Steffen E Davies, L Ceri Schoepf, U Joseph Rowe, Garrett W van Mieghem, Carlos A G van Driessche, Luc Sinitsyn, Valentin Gopalan, Deepa Nikolaou, Konstantin Bamberg, Fabian Cury, Ricardo C Battle, Juan Maurovich-Horvat, Pál Bartykowszki, Andrea Merkely, Bela Becker, Dávid Hadamitzky, Martin Hausleiter, Jörg Dewey, Marc Zimmermann, Elke Laule, Michael |
author_sort | Genders, Tessa S S |
collection | PubMed |
description | Objectives To develop prediction models that better estimate the pretest probability of coronary artery disease in low prevalence populations. Design Retrospective pooled analysis of individual patient data. Setting 18 hospitals in Europe and the United States. Participants Patients with stable chest pain without evidence for previous coronary artery disease, if they were referred for computed tomography (CT) based coronary angiography or catheter based coronary angiography (indicated as low and high prevalence settings, respectively). Main outcome measures Obstructive coronary artery disease (≥50% diameter stenosis in at least one vessel found on catheter based coronary angiography). Multiple imputation accounted for missing predictors and outcomes, exploiting strong correlation between the two angiography procedures. Predictive models included a basic model (age, sex, symptoms, and setting), clinical model (basic model factors and diabetes, hypertension, dyslipidaemia, and smoking), and extended model (clinical model factors and use of the CT based coronary calcium score). We assessed discrimination (c statistic), calibration, and continuous net reclassification improvement by cross validation for the four largest low prevalence datasets separately and the smaller remaining low prevalence datasets combined. Results We included 5677 patients (3283 men, 2394 women), of whom 1634 had obstructive coronary artery disease found on catheter based coronary angiography. All potential predictors were significantly associated with the presence of disease in univariable and multivariable analyses. The clinical model improved the prediction, compared with the basic model (cross validated c statistic improvement from 0.77 to 0.79, net reclassification improvement 35%); the coronary calcium score in the extended model was a major predictor (0.79 to 0.88, 102%). Calibration for low prevalence datasets was satisfactory. Conclusions Updated prediction models including age, sex, symptoms, and cardiovascular risk factors allow for accurate estimation of the pretest probability of coronary artery disease in low prevalence populations. Addition of coronary calcium scores to the prediction models improves the estimates. |
format | Online Article Text |
id | pubmed-3374026 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2012 |
publisher | BMJ Publishing Group Ltd. |
record_format | MEDLINE/PubMed |
spelling | pubmed-33740262012-06-14 Prediction model to estimate presence of coronary artery disease: retrospective pooled analysis of existing cohorts Genders, Tessa S S Steyerberg, Ewout W Hunink, M G Myriam Nieman, Koen Galema, Tjebbe W Mollet, Nico R de Feyter, Pim J Krestin, Gabriel P Alkadhi, Hatem Leschka, Sebastian Desbiolles, Lotus Meijs, Matthijs F L Cramer, Maarten J Knuuti, Juhani Kajander, Sami Bogaert, Jan Goetschalckx, Kaatje Cademartiri, Filippo Maffei, Erica Martini, Chiara Seitun, Sara Aldrovandi, Annachiara Wildermuth, Simon Stinn, Björn Fornaro, Jürgen Feuchtner, Gudrun De Zordo, Tobias Auer, Thomas Plank, Fabian Friedrich, Guy Pugliese, Francesca Petersen, Steffen E Davies, L Ceri Schoepf, U Joseph Rowe, Garrett W van Mieghem, Carlos A G van Driessche, Luc Sinitsyn, Valentin Gopalan, Deepa Nikolaou, Konstantin Bamberg, Fabian Cury, Ricardo C Battle, Juan Maurovich-Horvat, Pál Bartykowszki, Andrea Merkely, Bela Becker, Dávid Hadamitzky, Martin Hausleiter, Jörg Dewey, Marc Zimmermann, Elke Laule, Michael BMJ Research Objectives To develop prediction models that better estimate the pretest probability of coronary artery disease in low prevalence populations. Design Retrospective pooled analysis of individual patient data. Setting 18 hospitals in Europe and the United States. Participants Patients with stable chest pain without evidence for previous coronary artery disease, if they were referred for computed tomography (CT) based coronary angiography or catheter based coronary angiography (indicated as low and high prevalence settings, respectively). Main outcome measures Obstructive coronary artery disease (≥50% diameter stenosis in at least one vessel found on catheter based coronary angiography). Multiple imputation accounted for missing predictors and outcomes, exploiting strong correlation between the two angiography procedures. Predictive models included a basic model (age, sex, symptoms, and setting), clinical model (basic model factors and diabetes, hypertension, dyslipidaemia, and smoking), and extended model (clinical model factors and use of the CT based coronary calcium score). We assessed discrimination (c statistic), calibration, and continuous net reclassification improvement by cross validation for the four largest low prevalence datasets separately and the smaller remaining low prevalence datasets combined. Results We included 5677 patients (3283 men, 2394 women), of whom 1634 had obstructive coronary artery disease found on catheter based coronary angiography. All potential predictors were significantly associated with the presence of disease in univariable and multivariable analyses. The clinical model improved the prediction, compared with the basic model (cross validated c statistic improvement from 0.77 to 0.79, net reclassification improvement 35%); the coronary calcium score in the extended model was a major predictor (0.79 to 0.88, 102%). Calibration for low prevalence datasets was satisfactory. Conclusions Updated prediction models including age, sex, symptoms, and cardiovascular risk factors allow for accurate estimation of the pretest probability of coronary artery disease in low prevalence populations. Addition of coronary calcium scores to the prediction models improves the estimates. BMJ Publishing Group Ltd. 2012-06-12 /pmc/articles/PMC3374026/ /pubmed/22692650 http://dx.doi.org/10.1136/bmj.e3485 Text en © Genders et al 2012 This is an open-access article distributed under the terms of the Creative Commons Attribution Non-commercial License, which permits use, distribution, and reproduction in any medium, provided the original work is properly cited, the use is non commercial and is otherwise in compliance with the license. See: http://creativecommons.org/licenses/by-nc/2.0/ and http://creativecommons.org/licenses/by-nc/2.0/legalcode. |
spellingShingle | Research Genders, Tessa S S Steyerberg, Ewout W Hunink, M G Myriam Nieman, Koen Galema, Tjebbe W Mollet, Nico R de Feyter, Pim J Krestin, Gabriel P Alkadhi, Hatem Leschka, Sebastian Desbiolles, Lotus Meijs, Matthijs F L Cramer, Maarten J Knuuti, Juhani Kajander, Sami Bogaert, Jan Goetschalckx, Kaatje Cademartiri, Filippo Maffei, Erica Martini, Chiara Seitun, Sara Aldrovandi, Annachiara Wildermuth, Simon Stinn, Björn Fornaro, Jürgen Feuchtner, Gudrun De Zordo, Tobias Auer, Thomas Plank, Fabian Friedrich, Guy Pugliese, Francesca Petersen, Steffen E Davies, L Ceri Schoepf, U Joseph Rowe, Garrett W van Mieghem, Carlos A G van Driessche, Luc Sinitsyn, Valentin Gopalan, Deepa Nikolaou, Konstantin Bamberg, Fabian Cury, Ricardo C Battle, Juan Maurovich-Horvat, Pál Bartykowszki, Andrea Merkely, Bela Becker, Dávid Hadamitzky, Martin Hausleiter, Jörg Dewey, Marc Zimmermann, Elke Laule, Michael Prediction model to estimate presence of coronary artery disease: retrospective pooled analysis of existing cohorts |
title | Prediction model to estimate presence of coronary artery disease: retrospective pooled analysis of existing cohorts |
title_full | Prediction model to estimate presence of coronary artery disease: retrospective pooled analysis of existing cohorts |
title_fullStr | Prediction model to estimate presence of coronary artery disease: retrospective pooled analysis of existing cohorts |
title_full_unstemmed | Prediction model to estimate presence of coronary artery disease: retrospective pooled analysis of existing cohorts |
title_short | Prediction model to estimate presence of coronary artery disease: retrospective pooled analysis of existing cohorts |
title_sort | prediction model to estimate presence of coronary artery disease: retrospective pooled analysis of existing cohorts |
topic | Research |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3374026/ https://www.ncbi.nlm.nih.gov/pubmed/22692650 http://dx.doi.org/10.1136/bmj.e3485 |
work_keys_str_mv | AT genderstessass predictionmodeltoestimatepresenceofcoronaryarterydiseaseretrospectivepooledanalysisofexistingcohorts AT steyerbergewoutw predictionmodeltoestimatepresenceofcoronaryarterydiseaseretrospectivepooledanalysisofexistingcohorts AT huninkmgmyriam predictionmodeltoestimatepresenceofcoronaryarterydiseaseretrospectivepooledanalysisofexistingcohorts AT niemankoen predictionmodeltoestimatepresenceofcoronaryarterydiseaseretrospectivepooledanalysisofexistingcohorts AT galematjebbew predictionmodeltoestimatepresenceofcoronaryarterydiseaseretrospectivepooledanalysisofexistingcohorts AT molletnicor predictionmodeltoestimatepresenceofcoronaryarterydiseaseretrospectivepooledanalysisofexistingcohorts AT defeyterpimj predictionmodeltoestimatepresenceofcoronaryarterydiseaseretrospectivepooledanalysisofexistingcohorts AT krestingabrielp predictionmodeltoestimatepresenceofcoronaryarterydiseaseretrospectivepooledanalysisofexistingcohorts AT alkadhihatem predictionmodeltoestimatepresenceofcoronaryarterydiseaseretrospectivepooledanalysisofexistingcohorts AT leschkasebastian predictionmodeltoestimatepresenceofcoronaryarterydiseaseretrospectivepooledanalysisofexistingcohorts AT desbiolleslotus predictionmodeltoestimatepresenceofcoronaryarterydiseaseretrospectivepooledanalysisofexistingcohorts AT meijsmatthijsfl predictionmodeltoestimatepresenceofcoronaryarterydiseaseretrospectivepooledanalysisofexistingcohorts AT cramermaartenj predictionmodeltoestimatepresenceofcoronaryarterydiseaseretrospectivepooledanalysisofexistingcohorts AT knuutijuhani predictionmodeltoestimatepresenceofcoronaryarterydiseaseretrospectivepooledanalysisofexistingcohorts AT kajandersami predictionmodeltoestimatepresenceofcoronaryarterydiseaseretrospectivepooledanalysisofexistingcohorts AT bogaertjan predictionmodeltoestimatepresenceofcoronaryarterydiseaseretrospectivepooledanalysisofexistingcohorts AT goetschalckxkaatje predictionmodeltoestimatepresenceofcoronaryarterydiseaseretrospectivepooledanalysisofexistingcohorts AT cademartirifilippo predictionmodeltoestimatepresenceofcoronaryarterydiseaseretrospectivepooledanalysisofexistingcohorts AT maffeierica predictionmodeltoestimatepresenceofcoronaryarterydiseaseretrospectivepooledanalysisofexistingcohorts AT martinichiara predictionmodeltoestimatepresenceofcoronaryarterydiseaseretrospectivepooledanalysisofexistingcohorts AT seitunsara predictionmodeltoestimatepresenceofcoronaryarterydiseaseretrospectivepooledanalysisofexistingcohorts AT aldrovandiannachiara predictionmodeltoestimatepresenceofcoronaryarterydiseaseretrospectivepooledanalysisofexistingcohorts AT wildermuthsimon predictionmodeltoestimatepresenceofcoronaryarterydiseaseretrospectivepooledanalysisofexistingcohorts AT stinnbjorn predictionmodeltoestimatepresenceofcoronaryarterydiseaseretrospectivepooledanalysisofexistingcohorts AT fornarojurgen predictionmodeltoestimatepresenceofcoronaryarterydiseaseretrospectivepooledanalysisofexistingcohorts AT feuchtnergudrun predictionmodeltoestimatepresenceofcoronaryarterydiseaseretrospectivepooledanalysisofexistingcohorts AT dezordotobias predictionmodeltoestimatepresenceofcoronaryarterydiseaseretrospectivepooledanalysisofexistingcohorts AT auerthomas predictionmodeltoestimatepresenceofcoronaryarterydiseaseretrospectivepooledanalysisofexistingcohorts AT plankfabian predictionmodeltoestimatepresenceofcoronaryarterydiseaseretrospectivepooledanalysisofexistingcohorts AT friedrichguy predictionmodeltoestimatepresenceofcoronaryarterydiseaseretrospectivepooledanalysisofexistingcohorts AT pugliesefrancesca predictionmodeltoestimatepresenceofcoronaryarterydiseaseretrospectivepooledanalysisofexistingcohorts AT petersensteffene predictionmodeltoestimatepresenceofcoronaryarterydiseaseretrospectivepooledanalysisofexistingcohorts AT davieslceri predictionmodeltoestimatepresenceofcoronaryarterydiseaseretrospectivepooledanalysisofexistingcohorts AT schoepfujoseph predictionmodeltoestimatepresenceofcoronaryarterydiseaseretrospectivepooledanalysisofexistingcohorts AT rowegarrettw predictionmodeltoestimatepresenceofcoronaryarterydiseaseretrospectivepooledanalysisofexistingcohorts AT vanmieghemcarlosag predictionmodeltoestimatepresenceofcoronaryarterydiseaseretrospectivepooledanalysisofexistingcohorts AT vandriesscheluc predictionmodeltoestimatepresenceofcoronaryarterydiseaseretrospectivepooledanalysisofexistingcohorts AT sinitsynvalentin predictionmodeltoestimatepresenceofcoronaryarterydiseaseretrospectivepooledanalysisofexistingcohorts AT gopalandeepa predictionmodeltoestimatepresenceofcoronaryarterydiseaseretrospectivepooledanalysisofexistingcohorts AT nikolaoukonstantin predictionmodeltoestimatepresenceofcoronaryarterydiseaseretrospectivepooledanalysisofexistingcohorts AT bambergfabian predictionmodeltoestimatepresenceofcoronaryarterydiseaseretrospectivepooledanalysisofexistingcohorts AT curyricardoc predictionmodeltoestimatepresenceofcoronaryarterydiseaseretrospectivepooledanalysisofexistingcohorts AT battlejuan predictionmodeltoestimatepresenceofcoronaryarterydiseaseretrospectivepooledanalysisofexistingcohorts AT maurovichhorvatpal predictionmodeltoestimatepresenceofcoronaryarterydiseaseretrospectivepooledanalysisofexistingcohorts AT bartykowszkiandrea predictionmodeltoestimatepresenceofcoronaryarterydiseaseretrospectivepooledanalysisofexistingcohorts AT merkelybela predictionmodeltoestimatepresenceofcoronaryarterydiseaseretrospectivepooledanalysisofexistingcohorts AT beckerdavid predictionmodeltoestimatepresenceofcoronaryarterydiseaseretrospectivepooledanalysisofexistingcohorts AT hadamitzkymartin predictionmodeltoestimatepresenceofcoronaryarterydiseaseretrospectivepooledanalysisofexistingcohorts AT hausleiterjorg predictionmodeltoestimatepresenceofcoronaryarterydiseaseretrospectivepooledanalysisofexistingcohorts AT deweymarc predictionmodeltoestimatepresenceofcoronaryarterydiseaseretrospectivepooledanalysisofexistingcohorts AT zimmermannelke predictionmodeltoestimatepresenceofcoronaryarterydiseaseretrospectivepooledanalysisofexistingcohorts AT laulemichael predictionmodeltoestimatepresenceofcoronaryarterydiseaseretrospectivepooledanalysisofexistingcohorts |