Cargando…
Functional Remineralization of Dentin Lesions Using Polymer-Induced Liquid-Precursor Process
It was hypothesized that applying the polymer-induced liquid-precursor (PILP) system to artificial lesions would result in time-dependent functional remineralization of carious dentin lesions that restores the mechanical properties of demineralized dentin matrix. 140 µm deep artificial caries lesion...
Autores principales: | , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2012
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3374775/ https://www.ncbi.nlm.nih.gov/pubmed/22719965 http://dx.doi.org/10.1371/journal.pone.0038852 |
_version_ | 1782235678837309440 |
---|---|
author | Burwell, Anora K. Thula-Mata, Taili Gower, Laurie B. Habeliz, Stefan Kurylo, Michael Ho, Sunita P. Chien, Yung-Ching Cheng, Jing Cheng, Nancy F. Gansky, Stuart A. Marshall, Sally J. Marshall, Grayson W. |
author_facet | Burwell, Anora K. Thula-Mata, Taili Gower, Laurie B. Habeliz, Stefan Kurylo, Michael Ho, Sunita P. Chien, Yung-Ching Cheng, Jing Cheng, Nancy F. Gansky, Stuart A. Marshall, Sally J. Marshall, Grayson W. |
author_sort | Burwell, Anora K. |
collection | PubMed |
description | It was hypothesized that applying the polymer-induced liquid-precursor (PILP) system to artificial lesions would result in time-dependent functional remineralization of carious dentin lesions that restores the mechanical properties of demineralized dentin matrix. 140 µm deep artificial caries lesions were remineralized via the PILP process for 7–28 days at 37°C to determine temporal remineralization characteristics. Poly-L-aspartic acid (27 KDa) was used as the polymeric process-directing agent and was added to the remineralization solution at a calcium-to-phosphate ratio of 2.14 (mol/mol). Nanomechanical properties of hydrated artificial lesions had a low reduced elastic modulus (E(R) = 0.2 GPa) region extending about 70 μm into the lesion, with a sloped region to about 140 μm where values reached normal dentin (18–20 GPa). After 7 days specimens recovered mechanical properties in the sloped region by 51% compared to the artificial lesion. Between 7–14 days, recovery of the outer portion of the lesion continued to a level of about 10 GPa with 74% improvement. 28 days of PILP mineralization resulted in 91% improvement of E(R) compared to the artificial lesion. These differences were statistically significant as determined from change-point diagrams. Mineral profiles determined by micro x-ray computed tomography were shallower than those determined by nanoindentation, and showed similar changes over time, but full mineral recovery occurred after 14 days in both the outer and sloped portions of the lesion. Scanning electron microscopy and energy dispersive x-ray analysis showed similar morphologies that were distinct from normal dentin with a clear line of demarcation between the outer and sloped portions of the lesion. Transmission electron microscopy and selected area electron diffraction showed that the starting lesions contained some residual mineral in the outer portions, which exhibited poor crystallinity. During remineralization, intrafibrillar mineral increased and crystallinity improved with intrafibrillar mineral exhibiting the orientation found in normal dentin or bone. |
format | Online Article Text |
id | pubmed-3374775 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2012 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-33747752012-06-20 Functional Remineralization of Dentin Lesions Using Polymer-Induced Liquid-Precursor Process Burwell, Anora K. Thula-Mata, Taili Gower, Laurie B. Habeliz, Stefan Kurylo, Michael Ho, Sunita P. Chien, Yung-Ching Cheng, Jing Cheng, Nancy F. Gansky, Stuart A. Marshall, Sally J. Marshall, Grayson W. PLoS One Research Article It was hypothesized that applying the polymer-induced liquid-precursor (PILP) system to artificial lesions would result in time-dependent functional remineralization of carious dentin lesions that restores the mechanical properties of demineralized dentin matrix. 140 µm deep artificial caries lesions were remineralized via the PILP process for 7–28 days at 37°C to determine temporal remineralization characteristics. Poly-L-aspartic acid (27 KDa) was used as the polymeric process-directing agent and was added to the remineralization solution at a calcium-to-phosphate ratio of 2.14 (mol/mol). Nanomechanical properties of hydrated artificial lesions had a low reduced elastic modulus (E(R) = 0.2 GPa) region extending about 70 μm into the lesion, with a sloped region to about 140 μm where values reached normal dentin (18–20 GPa). After 7 days specimens recovered mechanical properties in the sloped region by 51% compared to the artificial lesion. Between 7–14 days, recovery of the outer portion of the lesion continued to a level of about 10 GPa with 74% improvement. 28 days of PILP mineralization resulted in 91% improvement of E(R) compared to the artificial lesion. These differences were statistically significant as determined from change-point diagrams. Mineral profiles determined by micro x-ray computed tomography were shallower than those determined by nanoindentation, and showed similar changes over time, but full mineral recovery occurred after 14 days in both the outer and sloped portions of the lesion. Scanning electron microscopy and energy dispersive x-ray analysis showed similar morphologies that were distinct from normal dentin with a clear line of demarcation between the outer and sloped portions of the lesion. Transmission electron microscopy and selected area electron diffraction showed that the starting lesions contained some residual mineral in the outer portions, which exhibited poor crystallinity. During remineralization, intrafibrillar mineral increased and crystallinity improved with intrafibrillar mineral exhibiting the orientation found in normal dentin or bone. Public Library of Science 2012-06-13 /pmc/articles/PMC3374775/ /pubmed/22719965 http://dx.doi.org/10.1371/journal.pone.0038852 Text en Burwell et al. http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are properly credited. |
spellingShingle | Research Article Burwell, Anora K. Thula-Mata, Taili Gower, Laurie B. Habeliz, Stefan Kurylo, Michael Ho, Sunita P. Chien, Yung-Ching Cheng, Jing Cheng, Nancy F. Gansky, Stuart A. Marshall, Sally J. Marshall, Grayson W. Functional Remineralization of Dentin Lesions Using Polymer-Induced Liquid-Precursor Process |
title | Functional Remineralization of Dentin Lesions Using Polymer-Induced Liquid-Precursor Process |
title_full | Functional Remineralization of Dentin Lesions Using Polymer-Induced Liquid-Precursor Process |
title_fullStr | Functional Remineralization of Dentin Lesions Using Polymer-Induced Liquid-Precursor Process |
title_full_unstemmed | Functional Remineralization of Dentin Lesions Using Polymer-Induced Liquid-Precursor Process |
title_short | Functional Remineralization of Dentin Lesions Using Polymer-Induced Liquid-Precursor Process |
title_sort | functional remineralization of dentin lesions using polymer-induced liquid-precursor process |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3374775/ https://www.ncbi.nlm.nih.gov/pubmed/22719965 http://dx.doi.org/10.1371/journal.pone.0038852 |
work_keys_str_mv | AT burwellanorak functionalremineralizationofdentinlesionsusingpolymerinducedliquidprecursorprocess AT thulamatataili functionalremineralizationofdentinlesionsusingpolymerinducedliquidprecursorprocess AT gowerlaurieb functionalremineralizationofdentinlesionsusingpolymerinducedliquidprecursorprocess AT habelizstefan functionalremineralizationofdentinlesionsusingpolymerinducedliquidprecursorprocess AT kurylomichael functionalremineralizationofdentinlesionsusingpolymerinducedliquidprecursorprocess AT hosunitap functionalremineralizationofdentinlesionsusingpolymerinducedliquidprecursorprocess AT chienyungching functionalremineralizationofdentinlesionsusingpolymerinducedliquidprecursorprocess AT chengjing functionalremineralizationofdentinlesionsusingpolymerinducedliquidprecursorprocess AT chengnancyf functionalremineralizationofdentinlesionsusingpolymerinducedliquidprecursorprocess AT ganskystuarta functionalremineralizationofdentinlesionsusingpolymerinducedliquidprecursorprocess AT marshallsallyj functionalremineralizationofdentinlesionsusingpolymerinducedliquidprecursorprocess AT marshallgraysonw functionalremineralizationofdentinlesionsusingpolymerinducedliquidprecursorprocess |