Cargando…
Multi-Label Multi-Kernel Transfer Learning for Human Protein Subcellular Localization
Recent years have witnessed much progress in computational modelling for protein subcellular localization. However, the existing sequence-based predictive models demonstrate moderate or unsatisfactory performance, and the gene ontology (GO) based models may take the risk of performance overestimatio...
Autor principal: | Mei, Suyu |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2012
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3374840/ https://www.ncbi.nlm.nih.gov/pubmed/22719847 http://dx.doi.org/10.1371/journal.pone.0037716 |
Ejemplares similares
-
Correction: Multi-Label Multi-Kernel Transfer Learning for Human Protein Subcellular Localization
por: Mei, Suyu
Publicado: (2013) -
Correction: Multi-Label Multi-Kernel Transfer Learning for Human Protein Subcellular Localization
por: Mei, Suyu
Publicado: (2013) -
Gene ontology based transfer learning for protein subcellular localization
por: Mei, Suyu, et al.
Publicado: (2011) -
Multi-label multi-instance transfer learning for simultaneous reconstruction and cross-talk modeling of multiple human signaling pathways
por: Mei, Suyu, et al.
Publicado: (2015) -
Imbalanced Multi-Modal Multi-Label Learning for Subcellular Localization Prediction of Human Proteins with Both Single and Multiple Sites
por: He, Jianjun, et al.
Publicado: (2012)