Cargando…

Encoding of emotion-paired spatial stimuli in the rodent hippocampus

Rats can acquire the cognitive component of CS-US associations between sensory and aversive stimuli without a functional basolateral amygdala (BLA). Thus, other brain regions should support such associations. Some septal/dorsal CA1 (dCA1) neurons respond to both spatial stimuli and footshock, sugges...

Descripción completa

Detalles Bibliográficos
Autores principales: Nalloor, Rebecca, Bunting, Kristopher M., Vazdarjanova, Almira
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Frontiers Media S.A. 2012
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3374936/
https://www.ncbi.nlm.nih.gov/pubmed/22712009
http://dx.doi.org/10.3389/fnbeh.2012.00027
_version_ 1782235694930853888
author Nalloor, Rebecca
Bunting, Kristopher M.
Vazdarjanova, Almira
author_facet Nalloor, Rebecca
Bunting, Kristopher M.
Vazdarjanova, Almira
author_sort Nalloor, Rebecca
collection PubMed
description Rats can acquire the cognitive component of CS-US associations between sensory and aversive stimuli without a functional basolateral amygdala (BLA). Thus, other brain regions should support such associations. Some septal/dorsal CA1 (dCA1) neurons respond to both spatial stimuli and footshock, suggesting that dCA1 could be one such region. We report that, in both dorsal and ventral hippocampus, different neuronal ensembles express immediate-early genes (IEGs) when a place is experienced alone vs. when it is associated with foot shock. We assessed changes in the size and overlap of hippocampal neuronal ensembles activated by two behavioral events using a cellular imaging method, Arc/Homer1a catFISH. The control group (A-A) experienced the same place twice, while the experimental group (A-CFC) received the same training plus two foot shocks during the second event. During fear conditioning, A-CFC, compared to A-A, rats had a smaller ensemble size in dCA3, dCA1, and vCA3, but not vCA1. Additionally, A-CFC rats had a lower overlap score in dCA1 and vCA3. Locomotion did not correlate with ensemble size. Importantly, foot shocks delivered in a training paradigm that prevents establishing shock-context associations, did not induce significant Arc expression, rejecting the possibility that the observed changes in ensemble size and composition simply reflect experiencing a foot shock. Combined with data that Arc is necessary for lasting synaptic plasticity and long-term memory, the data suggests that Arc/H1a+ hippocampal neuronal ensembles encode aspects of fear conditioning beyond space and time. Rats, like humans, may use the hippocampus to create integrated episodic-like memory during fear conditioning.
format Online
Article
Text
id pubmed-3374936
institution National Center for Biotechnology Information
language English
publishDate 2012
publisher Frontiers Media S.A.
record_format MEDLINE/PubMed
spelling pubmed-33749362012-06-18 Encoding of emotion-paired spatial stimuli in the rodent hippocampus Nalloor, Rebecca Bunting, Kristopher M. Vazdarjanova, Almira Front Behav Neurosci Neuroscience Rats can acquire the cognitive component of CS-US associations between sensory and aversive stimuli without a functional basolateral amygdala (BLA). Thus, other brain regions should support such associations. Some septal/dorsal CA1 (dCA1) neurons respond to both spatial stimuli and footshock, suggesting that dCA1 could be one such region. We report that, in both dorsal and ventral hippocampus, different neuronal ensembles express immediate-early genes (IEGs) when a place is experienced alone vs. when it is associated with foot shock. We assessed changes in the size and overlap of hippocampal neuronal ensembles activated by two behavioral events using a cellular imaging method, Arc/Homer1a catFISH. The control group (A-A) experienced the same place twice, while the experimental group (A-CFC) received the same training plus two foot shocks during the second event. During fear conditioning, A-CFC, compared to A-A, rats had a smaller ensemble size in dCA3, dCA1, and vCA3, but not vCA1. Additionally, A-CFC rats had a lower overlap score in dCA1 and vCA3. Locomotion did not correlate with ensemble size. Importantly, foot shocks delivered in a training paradigm that prevents establishing shock-context associations, did not induce significant Arc expression, rejecting the possibility that the observed changes in ensemble size and composition simply reflect experiencing a foot shock. Combined with data that Arc is necessary for lasting synaptic plasticity and long-term memory, the data suggests that Arc/H1a+ hippocampal neuronal ensembles encode aspects of fear conditioning beyond space and time. Rats, like humans, may use the hippocampus to create integrated episodic-like memory during fear conditioning. Frontiers Media S.A. 2012-06-14 /pmc/articles/PMC3374936/ /pubmed/22712009 http://dx.doi.org/10.3389/fnbeh.2012.00027 Text en Copyright © 2012 Nalloor, Bunting and Vazdarjanova. http://www.frontiersin.org/licenseagreement This is an open-access article distributed under the terms of the Creative Commons Attribution Non Commercial License, which permits non-commercial use, distribution, and reproduction in other forums, provided the original authors and source are credited.
spellingShingle Neuroscience
Nalloor, Rebecca
Bunting, Kristopher M.
Vazdarjanova, Almira
Encoding of emotion-paired spatial stimuli in the rodent hippocampus
title Encoding of emotion-paired spatial stimuli in the rodent hippocampus
title_full Encoding of emotion-paired spatial stimuli in the rodent hippocampus
title_fullStr Encoding of emotion-paired spatial stimuli in the rodent hippocampus
title_full_unstemmed Encoding of emotion-paired spatial stimuli in the rodent hippocampus
title_short Encoding of emotion-paired spatial stimuli in the rodent hippocampus
title_sort encoding of emotion-paired spatial stimuli in the rodent hippocampus
topic Neuroscience
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3374936/
https://www.ncbi.nlm.nih.gov/pubmed/22712009
http://dx.doi.org/10.3389/fnbeh.2012.00027
work_keys_str_mv AT nalloorrebecca encodingofemotionpairedspatialstimuliintherodenthippocampus
AT buntingkristopherm encodingofemotionpairedspatialstimuliintherodenthippocampus
AT vazdarjanovaalmira encodingofemotionpairedspatialstimuliintherodenthippocampus