Cargando…
Effect of image compression and scaling on automated scoring of immunohistochemical stainings and segmentation of tumor epithelium
BACKGROUND: Digital whole-slide scanning of tissue specimens produces large images demanding increasing storing capacity. To reduce the need of extensive data storage systems image files can be compressed and scaled down. The aim of this article is to study the effect of different levels of image co...
Autores principales: | Konsti, Juho, Lundin, Mikael, Linder, Nina, Haglund, Caj, Blomqvist, Carl, Nevanlinna, Heli, Aaltonen, Kirsimari, Nordling, Stig, Lundin, Johan |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2012
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3375185/ https://www.ncbi.nlm.nih.gov/pubmed/22436596 http://dx.doi.org/10.1186/1746-1596-7-29 |
Ejemplares similares
-
Identification of tumor epithelium and stroma in tissue microarrays using texture analysis
por: Linder, Nina, et al.
Publicado: (2012) -
Automated segmentation of blood cells in Giemsa stained digitized thin blood films
por: Walliander, Margarita, et al.
Publicado: (2013) -
Deep learning based tissue analysis predicts outcome in colorectal cancer
por: Bychkov, Dmitrii, et al.
Publicado: (2018) -
A deep learning–based algorithm for tall cell detection in papillary thyroid carcinoma
por: Stenman, Sebastian, et al.
Publicado: (2022) -
Mast cells and eosinophils in invasive breast carcinoma
por: Amini, Rose-Marie, et al.
Publicado: (2007)