Cargando…

Biodegradable biomatrices and bridging the injured spinal cord: the corticospinal tract as a proof of principle

Important advances in the development of smart biodegradable implants for axonal regeneration after spinal cord injury have recently been reported. These advances are evaluated in this review with special emphasis on the regeneration of the corticospinal tract. The corticospinal tract is often consi...

Descripción completa

Detalles Bibliográficos
Autor principal: Joosten, Elbert A. J.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Springer-Verlag 2012
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3375422/
https://www.ncbi.nlm.nih.gov/pubmed/22411698
http://dx.doi.org/10.1007/s00441-012-1352-5
Descripción
Sumario:Important advances in the development of smart biodegradable implants for axonal regeneration after spinal cord injury have recently been reported. These advances are evaluated in this review with special emphasis on the regeneration of the corticospinal tract. The corticospinal tract is often considered the ultimate challenge in demonstrating whether a repair strategy has been successful in the regeneration of the injured mammalian spinal cord. The extensive know-how of factors and cells involved in the development of the corticospinal tract, and the advances made in material science and tissue engineering technology, have provided the foundations for the optimization of the biomatrices needed for repair. Based on the findings summarized in this review, the future development of smart biodegradable bridges for CST regrowth and regeneration in the injured spinal cord is discussed.