Cargando…
THINK Back: KNowledge-based Interpretation of High Throughput data
Results of high throughput experiments can be challenging to interpret. Current approaches have relied on bulk processing the set of expression levels, in conjunction with easily obtained external evidence, such as co-occurrence. While such techniques can be used to reason probabilistically, they ar...
Autores principales: | Farfán, Fernando, Ma, Jun, Sartor, Maureen A, Michailidis, George, Jagadish, Hosagrahar V |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2012
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3375631/ https://www.ncbi.nlm.nih.gov/pubmed/22536867 http://dx.doi.org/10.1186/1471-2105-13-S2-S4 |
Ejemplares similares
-
Genome reassembly with high-throughput sequencing data
por: Parrish, Nathaniel, et al.
Publicado: (2013) -
Optimal assembly for high throughput shotgun sequencing
por: Bresler, Guy, et al.
Publicado: (2013) -
Building interpretable fuzzy models for high dimensional data analysis in cancer diagnosis
por: Wang, Zhenyu, et al.
Publicado: (2011) -
Estimating copy numbers of alleles from population-scale high-throughput sequencing data
por: Mimori, Takahiro, et al.
Publicado: (2015) -
Identifying micro-inversions using high-throughput sequencing reads
por: He, Feifei, et al.
Publicado: (2016)