Cargando…
Mouse Middle Ear Ion Homeostasis Channels and Intercellular Junctions
HYPOTHESIS: The middle ear contains homeostatic mechanisms that control the movement of ions and fluids similar to those present in the inner ear, and are altered during inflammation. BACKGROUND: The normal middle ear cavity is fluid-free and air-filled to allow for effective sound transmission. Wit...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2012
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3376096/ https://www.ncbi.nlm.nih.gov/pubmed/22720014 http://dx.doi.org/10.1371/journal.pone.0039004 |
_version_ | 1782235803364098048 |
---|---|
author | Morris, Lisa M. DeGagne, Jacqueline M. Kempton, J. Beth Hausman, Frances Trune, Dennis R. |
author_facet | Morris, Lisa M. DeGagne, Jacqueline M. Kempton, J. Beth Hausman, Frances Trune, Dennis R. |
author_sort | Morris, Lisa M. |
collection | PubMed |
description | HYPOTHESIS: The middle ear contains homeostatic mechanisms that control the movement of ions and fluids similar to those present in the inner ear, and are altered during inflammation. BACKGROUND: The normal middle ear cavity is fluid-free and air-filled to allow for effective sound transmission. Within the inner ear, the regulation of fluid and ion movement is essential for normal auditory and vestibular function. The same ion and fluid channels active in the inner ear may have similar roles with fluid regulation in the middle ear. METHODS: Middle and inner ears from BALB/c mice were processed for immunohistochemistry of 10 specific ion homeostasis factors to determine if similar transport and barrier mechanisms are present in the tympanic cavity. Examination also was made of BALB/c mice middle ears after transtympanic injection with heat-killed Haemophilus influenza to determine if these channels are impacted by inflammation. RESULTS: The most prominent ion channels in the middle ear included aquaporins 1, 4 and 5, claudin 3, ENaC and Na(+),K(+)-ATPase. Moderate staining was found for GJB2, KCNJ10 and KCNQ1. The inflamed middle ear epithelium showed increased staining due to expected cellular hypertrophy. Localization of ion channels was preserved within the inflamed middle ear epithelium. CONCLUSIONS: The middle ear epithelium is a dynamic environment with intrinsic mechanisms for the control of ion and water transport to keep the middle ear clear of fluids. Compromise of these processes during middle ear disease may underlie the accumulation of effusions and suggests they may be a therapeutic target for effusion control. |
format | Online Article Text |
id | pubmed-3376096 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2012 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-33760962012-06-20 Mouse Middle Ear Ion Homeostasis Channels and Intercellular Junctions Morris, Lisa M. DeGagne, Jacqueline M. Kempton, J. Beth Hausman, Frances Trune, Dennis R. PLoS One Research Article HYPOTHESIS: The middle ear contains homeostatic mechanisms that control the movement of ions and fluids similar to those present in the inner ear, and are altered during inflammation. BACKGROUND: The normal middle ear cavity is fluid-free and air-filled to allow for effective sound transmission. Within the inner ear, the regulation of fluid and ion movement is essential for normal auditory and vestibular function. The same ion and fluid channels active in the inner ear may have similar roles with fluid regulation in the middle ear. METHODS: Middle and inner ears from BALB/c mice were processed for immunohistochemistry of 10 specific ion homeostasis factors to determine if similar transport and barrier mechanisms are present in the tympanic cavity. Examination also was made of BALB/c mice middle ears after transtympanic injection with heat-killed Haemophilus influenza to determine if these channels are impacted by inflammation. RESULTS: The most prominent ion channels in the middle ear included aquaporins 1, 4 and 5, claudin 3, ENaC and Na(+),K(+)-ATPase. Moderate staining was found for GJB2, KCNJ10 and KCNQ1. The inflamed middle ear epithelium showed increased staining due to expected cellular hypertrophy. Localization of ion channels was preserved within the inflamed middle ear epithelium. CONCLUSIONS: The middle ear epithelium is a dynamic environment with intrinsic mechanisms for the control of ion and water transport to keep the middle ear clear of fluids. Compromise of these processes during middle ear disease may underlie the accumulation of effusions and suggests they may be a therapeutic target for effusion control. Public Library of Science 2012-06-15 /pmc/articles/PMC3376096/ /pubmed/22720014 http://dx.doi.org/10.1371/journal.pone.0039004 Text en Morris et al. http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are properly credited. |
spellingShingle | Research Article Morris, Lisa M. DeGagne, Jacqueline M. Kempton, J. Beth Hausman, Frances Trune, Dennis R. Mouse Middle Ear Ion Homeostasis Channels and Intercellular Junctions |
title | Mouse Middle Ear Ion Homeostasis Channels and Intercellular Junctions |
title_full | Mouse Middle Ear Ion Homeostasis Channels and Intercellular Junctions |
title_fullStr | Mouse Middle Ear Ion Homeostasis Channels and Intercellular Junctions |
title_full_unstemmed | Mouse Middle Ear Ion Homeostasis Channels and Intercellular Junctions |
title_short | Mouse Middle Ear Ion Homeostasis Channels and Intercellular Junctions |
title_sort | mouse middle ear ion homeostasis channels and intercellular junctions |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3376096/ https://www.ncbi.nlm.nih.gov/pubmed/22720014 http://dx.doi.org/10.1371/journal.pone.0039004 |
work_keys_str_mv | AT morrislisam mousemiddleearionhomeostasischannelsandintercellularjunctions AT degagnejacquelinem mousemiddleearionhomeostasischannelsandintercellularjunctions AT kemptonjbeth mousemiddleearionhomeostasischannelsandintercellularjunctions AT hausmanfrances mousemiddleearionhomeostasischannelsandintercellularjunctions AT trunedennisr mousemiddleearionhomeostasischannelsandintercellularjunctions |