Cargando…
A Two-Step Target Binding and Selectivity Support Vector Machines Approach for Virtual Screening of Dopamine Receptor Subtype-Selective Ligands
Target selective drugs, such as dopamine receptor (DR) subtype selective ligands, are developed for enhanced therapeutics and reduced side effects. In silico methods have been explored for searching DR selective ligands, but encountered difficulties associated with high subtype similarity and ligand...
Autores principales: | Zhang, Jingxian, Han, Bucong, Wei, Xiaona, Tan, Chunyan, Chen, Yuzong, Jiang, Yuyang |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2012
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3376116/ https://www.ncbi.nlm.nih.gov/pubmed/22720033 http://dx.doi.org/10.1371/journal.pone.0039076 |
Ejemplares similares
-
Development and experimental test of support vector machines virtual screening method for searching Src inhibitors from large compound libraries
por: Han, Bucong, et al.
Publicado: (2012) -
Haloperidol bound D(2) dopamine receptor structure inspired the discovery of subtype selective ligands
por: Fan, Luyu, et al.
Publicado: (2020) -
Crystal structure of dopamine receptor D4 bound to the subtype selective ligand, L745870
por: Zhou, Ye, et al.
Publicado: (2019) -
A novel machine learning strategy for model selections - Stepwise Support Vector Machine (StepSVM)
por: Guo, Chao-Yu, et al.
Publicado: (2020) -
Dopamine Receptor Ligand Selectivity—An In Silico/In Vitro Insight
por: Zell, Lukas, et al.
Publicado: (2023)