Cargando…
Phylogenetic Inference via Sequential Monte Carlo
Bayesian inference provides an appealing general framework for phylogenetic analysis, able to incorporate a wide variety of modeling assumptions and to provide a coherent treatment of uncertainty. Existing computational approaches to Bayesian inference based on Markov chain Monte Carlo (MCMC) have n...
Autores principales: | Bouchard-Côté, Alexandre, Sankararaman, Sriram, Jordan, Michael I. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2012
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3376373/ https://www.ncbi.nlm.nih.gov/pubmed/22223445 http://dx.doi.org/10.1093/sysbio/syr131 |
Ejemplares similares
-
Online Bayesian Phylogenetic Inference: Theoretical Foundations via Sequential Monte Carlo
por: Dinh, Vu, et al.
Publicado: (2018) -
Effective Online Bayesian Phylogenetics via Sequential Monte Carlo with Guided Proposals
por: Fourment, Mathieu, et al.
Publicado: (2018) -
Correctness of Sequential Monte Carlo Inference for Probabilistic Programming Languages
por: Lundén, Daniel, et al.
Publicado: (2021) -
Sequential Monte Carlo methods in practice
por: Jordan, Michael, et al.
Publicado: (2001) -
On the inference of complex phylogenetic networks by Markov Chain Monte-Carlo
por: Rabier, Charles-Elie, et al.
Publicado: (2021)