Cargando…
Using SRAM Based FPGAs for Power-Aware High Performance Wireless Sensor Networks
While for years traditional wireless sensor nodes have been based on ultra-low power microcontrollers with sufficient but limited computing power, the complexity and number of tasks of today’s applications are constantly increasing. Increasing the node duty cycle is not feasible in all cases, so in...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Molecular Diversity Preservation International (MDPI)
2012
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3376580/ https://www.ncbi.nlm.nih.gov/pubmed/22736971 http://dx.doi.org/10.3390/s120302667 |
_version_ | 1782235846726909952 |
---|---|
author | Valverde, Juan Otero, Andres Lopez, Miguel Portilla, Jorge de la Torre, Eduardo Riesgo, Teresa |
author_facet | Valverde, Juan Otero, Andres Lopez, Miguel Portilla, Jorge de la Torre, Eduardo Riesgo, Teresa |
author_sort | Valverde, Juan |
collection | PubMed |
description | While for years traditional wireless sensor nodes have been based on ultra-low power microcontrollers with sufficient but limited computing power, the complexity and number of tasks of today’s applications are constantly increasing. Increasing the node duty cycle is not feasible in all cases, so in many cases more computing power is required. This extra computing power may be achieved by either more powerful microcontrollers, though more power consumption or, in general, any solution capable of accelerating task execution. At this point, the use of hardware based, and in particular FPGA solutions, might appear as a candidate technology, since though power use is higher compared with lower power devices, execution time is reduced, so energy could be reduced overall. In order to demonstrate this, an innovative WSN node architecture is proposed. This architecture is based on a high performance high capacity state-of-the-art FPGA, which combines the advantages of the intrinsic acceleration provided by the parallelism of hardware devices, the use of partial reconfiguration capabilities, as well as a careful power-aware management system, to show that energy savings for certain higher-end applications can be achieved. Finally, comprehensive tests have been done to validate the platform in terms of performance and power consumption, to proof that better energy efficiency compared to processor based solutions can be achieved, for instance, when encryption is imposed by the application requirements. |
format | Online Article Text |
id | pubmed-3376580 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2012 |
publisher | Molecular Diversity Preservation International (MDPI) |
record_format | MEDLINE/PubMed |
spelling | pubmed-33765802012-06-25 Using SRAM Based FPGAs for Power-Aware High Performance Wireless Sensor Networks Valverde, Juan Otero, Andres Lopez, Miguel Portilla, Jorge de la Torre, Eduardo Riesgo, Teresa Sensors (Basel) Article While for years traditional wireless sensor nodes have been based on ultra-low power microcontrollers with sufficient but limited computing power, the complexity and number of tasks of today’s applications are constantly increasing. Increasing the node duty cycle is not feasible in all cases, so in many cases more computing power is required. This extra computing power may be achieved by either more powerful microcontrollers, though more power consumption or, in general, any solution capable of accelerating task execution. At this point, the use of hardware based, and in particular FPGA solutions, might appear as a candidate technology, since though power use is higher compared with lower power devices, execution time is reduced, so energy could be reduced overall. In order to demonstrate this, an innovative WSN node architecture is proposed. This architecture is based on a high performance high capacity state-of-the-art FPGA, which combines the advantages of the intrinsic acceleration provided by the parallelism of hardware devices, the use of partial reconfiguration capabilities, as well as a careful power-aware management system, to show that energy savings for certain higher-end applications can be achieved. Finally, comprehensive tests have been done to validate the platform in terms of performance and power consumption, to proof that better energy efficiency compared to processor based solutions can be achieved, for instance, when encryption is imposed by the application requirements. Molecular Diversity Preservation International (MDPI) 2012-02-28 /pmc/articles/PMC3376580/ /pubmed/22736971 http://dx.doi.org/10.3390/s120302667 Text en © 2012 by the authors; licensee MDPI, Basel, Switzerland This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/). |
spellingShingle | Article Valverde, Juan Otero, Andres Lopez, Miguel Portilla, Jorge de la Torre, Eduardo Riesgo, Teresa Using SRAM Based FPGAs for Power-Aware High Performance Wireless Sensor Networks |
title | Using SRAM Based FPGAs for Power-Aware High Performance Wireless Sensor Networks |
title_full | Using SRAM Based FPGAs for Power-Aware High Performance Wireless Sensor Networks |
title_fullStr | Using SRAM Based FPGAs for Power-Aware High Performance Wireless Sensor Networks |
title_full_unstemmed | Using SRAM Based FPGAs for Power-Aware High Performance Wireless Sensor Networks |
title_short | Using SRAM Based FPGAs for Power-Aware High Performance Wireless Sensor Networks |
title_sort | using sram based fpgas for power-aware high performance wireless sensor networks |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3376580/ https://www.ncbi.nlm.nih.gov/pubmed/22736971 http://dx.doi.org/10.3390/s120302667 |
work_keys_str_mv | AT valverdejuan usingsrambasedfpgasforpowerawarehighperformancewirelesssensornetworks AT oteroandres usingsrambasedfpgasforpowerawarehighperformancewirelesssensornetworks AT lopezmiguel usingsrambasedfpgasforpowerawarehighperformancewirelesssensornetworks AT portillajorge usingsrambasedfpgasforpowerawarehighperformancewirelesssensornetworks AT delatorreeduardo usingsrambasedfpgasforpowerawarehighperformancewirelesssensornetworks AT riesgoteresa usingsrambasedfpgasforpowerawarehighperformancewirelesssensornetworks |