Cargando…
Intelligent Control of a Sensor-Actuator System via Kernelized Least-Squares Policy Iteration
In this paper a new framework, called Compressive Kernelized Reinforcement Learning (CKRL), for computing near-optimal policies in sequential decision making with uncertainty is proposed via incorporating the non-adaptive data-independent Random Projections and nonparametric Kernelized Least-squares...
Autores principales: | Liu, Bo, Chen, Sanfeng, Li, Shuai, Liang, Yongsheng |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Molecular Diversity Preservation International (MDPI)
2012
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3376585/ https://www.ncbi.nlm.nih.gov/pubmed/22736969 http://dx.doi.org/10.3390/s120302632 |
Ejemplares similares
-
Self-Learning Variable Structure Control for a Class of Sensor-Actuator Systems
por: Chen, Sanfeng, et al.
Publicado: (2012) -
Colorimetric Characterization of Color Imaging System Based on Kernel Partial Least Squares
por: Zhao, Siyu, et al.
Publicado: (2023) -
Kernel Recursive Least-Squares Temporal Difference Algorithms with Sparsification and Regularization
por: Zhang, Chunyuan, et al.
Publicado: (2016) -
Estimates for iterated commutators of multilinear square fucntions with Dini-type kernels
por: Si, Zengyan, et al.
Publicado: (2018) -
Kernelized partial least squares for feature reduction and classification of gene microarray data
por: Land, Walker H, et al.
Publicado: (2011)