Cargando…
Artificial Neural Network for Location Estimation in Wireless Communication Systems
In a wireless communication system, wireless location is the technique used to estimate the location of a mobile station (MS). To enhance the accuracy of MS location prediction, we propose a novel algorithm that utilizes time of arrival (TOA) measurements and the angle of arrival (AOA) information t...
Autor principal: | |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Molecular Diversity Preservation International (MDPI)
2012
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3376586/ https://www.ncbi.nlm.nih.gov/pubmed/22736978 http://dx.doi.org/10.3390/s120302798 |
_version_ | 1782235848089010176 |
---|---|
author | Chen, Chien-Sheng |
author_facet | Chen, Chien-Sheng |
author_sort | Chen, Chien-Sheng |
collection | PubMed |
description | In a wireless communication system, wireless location is the technique used to estimate the location of a mobile station (MS). To enhance the accuracy of MS location prediction, we propose a novel algorithm that utilizes time of arrival (TOA) measurements and the angle of arrival (AOA) information to locate MS when three base stations (BSs) are available. Artificial neural networks (ANN) are widely used techniques in various areas to overcome the problem of exclusive and nonlinear relationships. When the MS is heard by only three BSs, the proposed algorithm utilizes the intersections of three TOA circles (and the AOA line), based on various neural networks, to estimate the MS location in non-line-of-sight (NLOS) environments. Simulations were conducted to evaluate the performance of the algorithm for different NLOS error distributions. The numerical analysis and simulation results show that the proposed algorithms can obtain more precise location estimation under different NLOS environments. |
format | Online Article Text |
id | pubmed-3376586 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2012 |
publisher | Molecular Diversity Preservation International (MDPI) |
record_format | MEDLINE/PubMed |
spelling | pubmed-33765862012-06-25 Artificial Neural Network for Location Estimation in Wireless Communication Systems Chen, Chien-Sheng Sensors (Basel) Article In a wireless communication system, wireless location is the technique used to estimate the location of a mobile station (MS). To enhance the accuracy of MS location prediction, we propose a novel algorithm that utilizes time of arrival (TOA) measurements and the angle of arrival (AOA) information to locate MS when three base stations (BSs) are available. Artificial neural networks (ANN) are widely used techniques in various areas to overcome the problem of exclusive and nonlinear relationships. When the MS is heard by only three BSs, the proposed algorithm utilizes the intersections of three TOA circles (and the AOA line), based on various neural networks, to estimate the MS location in non-line-of-sight (NLOS) environments. Simulations were conducted to evaluate the performance of the algorithm for different NLOS error distributions. The numerical analysis and simulation results show that the proposed algorithms can obtain more precise location estimation under different NLOS environments. Molecular Diversity Preservation International (MDPI) 2012-03-01 /pmc/articles/PMC3376586/ /pubmed/22736978 http://dx.doi.org/10.3390/s120302798 Text en © 2012 by the authors; licensee MDPI, Basel, Switzerland This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/). |
spellingShingle | Article Chen, Chien-Sheng Artificial Neural Network for Location Estimation in Wireless Communication Systems |
title | Artificial Neural Network for Location Estimation in Wireless Communication Systems |
title_full | Artificial Neural Network for Location Estimation in Wireless Communication Systems |
title_fullStr | Artificial Neural Network for Location Estimation in Wireless Communication Systems |
title_full_unstemmed | Artificial Neural Network for Location Estimation in Wireless Communication Systems |
title_short | Artificial Neural Network for Location Estimation in Wireless Communication Systems |
title_sort | artificial neural network for location estimation in wireless communication systems |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3376586/ https://www.ncbi.nlm.nih.gov/pubmed/22736978 http://dx.doi.org/10.3390/s120302798 |
work_keys_str_mv | AT chenchiensheng artificialneuralnetworkforlocationestimationinwirelesscommunicationsystems |