Cargando…
Consolidation of a WSN and Minimax Method to Rapidly Neutralise Intruders in Strategic Installations
Due to the sensitive international situation caused by still-recent terrorist attacks, there is a common need to protect the safety of large spaces such as government buildings, airports and power stations. To address this problem, developments in several research fields, such as video and cognitive...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Molecular Diversity Preservation International (MDPI)
2012
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3376604/ https://www.ncbi.nlm.nih.gov/pubmed/22737008 http://dx.doi.org/10.3390/s120303281 |
_version_ | 1782235852178456576 |
---|---|
author | Conesa-Muñoz, Jesus Ribeiro, Angela |
author_facet | Conesa-Muñoz, Jesus Ribeiro, Angela |
author_sort | Conesa-Muñoz, Jesus |
collection | PubMed |
description | Due to the sensitive international situation caused by still-recent terrorist attacks, there is a common need to protect the safety of large spaces such as government buildings, airports and power stations. To address this problem, developments in several research fields, such as video and cognitive audio, decision support systems, human interface, computer architecture, communications networks and communications security, should be integrated with the goal of achieving advanced security systems capable of checking all of the specified requirements and spanning the gap that presently exists in the current market. This paper describes the implementation of a decision system for crisis management in infrastructural building security. Specifically, it describes the implementation of a decision system in the management of building intrusions. The positions of the unidentified persons are reported with the help of a Wireless Sensor Network (WSN). The goal is to achieve an intelligent system capable of making the best decision in real time in order to quickly neutralise one or more intruders who threaten strategic installations. It is assumed that the intruders’ behaviour is inferred through sequences of sensors’ activations and their fusion. This article presents a general approach to selecting the optimum operation from the available neutralisation strategies based on a Minimax algorithm. The distances among different scenario elements will be used to measure the risk of the scene, so a path planning technique will be integrated in order to attain a good performance. Different actions to be executed over the elements of the scene such as moving a guard, blocking a door or turning on an alarm will be used to neutralise the crisis. This set of actions executed to stop the crisis is known as the neutralisation strategy. Finally, the system has been tested in simulations of real situations, and the results have been evaluated according to the final state of the intruders. In 86.5% of the cases, the system achieved the capture of the intruders, and in 59.25% of the cases, they were intercepted before they reached their objective. |
format | Online Article Text |
id | pubmed-3376604 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2012 |
publisher | Molecular Diversity Preservation International (MDPI) |
record_format | MEDLINE/PubMed |
spelling | pubmed-33766042012-06-25 Consolidation of a WSN and Minimax Method to Rapidly Neutralise Intruders in Strategic Installations Conesa-Muñoz, Jesus Ribeiro, Angela Sensors (Basel) Article Due to the sensitive international situation caused by still-recent terrorist attacks, there is a common need to protect the safety of large spaces such as government buildings, airports and power stations. To address this problem, developments in several research fields, such as video and cognitive audio, decision support systems, human interface, computer architecture, communications networks and communications security, should be integrated with the goal of achieving advanced security systems capable of checking all of the specified requirements and spanning the gap that presently exists in the current market. This paper describes the implementation of a decision system for crisis management in infrastructural building security. Specifically, it describes the implementation of a decision system in the management of building intrusions. The positions of the unidentified persons are reported with the help of a Wireless Sensor Network (WSN). The goal is to achieve an intelligent system capable of making the best decision in real time in order to quickly neutralise one or more intruders who threaten strategic installations. It is assumed that the intruders’ behaviour is inferred through sequences of sensors’ activations and their fusion. This article presents a general approach to selecting the optimum operation from the available neutralisation strategies based on a Minimax algorithm. The distances among different scenario elements will be used to measure the risk of the scene, so a path planning technique will be integrated in order to attain a good performance. Different actions to be executed over the elements of the scene such as moving a guard, blocking a door or turning on an alarm will be used to neutralise the crisis. This set of actions executed to stop the crisis is known as the neutralisation strategy. Finally, the system has been tested in simulations of real situations, and the results have been evaluated according to the final state of the intruders. In 86.5% of the cases, the system achieved the capture of the intruders, and in 59.25% of the cases, they were intercepted before they reached their objective. Molecular Diversity Preservation International (MDPI) 2012-03-07 /pmc/articles/PMC3376604/ /pubmed/22737008 http://dx.doi.org/10.3390/s120303281 Text en © 2012 by the authors; licensee MDPI, Basel, Switzerland This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/). |
spellingShingle | Article Conesa-Muñoz, Jesus Ribeiro, Angela Consolidation of a WSN and Minimax Method to Rapidly Neutralise Intruders in Strategic Installations |
title | Consolidation of a WSN and Minimax Method to Rapidly Neutralise Intruders in Strategic Installations |
title_full | Consolidation of a WSN and Minimax Method to Rapidly Neutralise Intruders in Strategic Installations |
title_fullStr | Consolidation of a WSN and Minimax Method to Rapidly Neutralise Intruders in Strategic Installations |
title_full_unstemmed | Consolidation of a WSN and Minimax Method to Rapidly Neutralise Intruders in Strategic Installations |
title_short | Consolidation of a WSN and Minimax Method to Rapidly Neutralise Intruders in Strategic Installations |
title_sort | consolidation of a wsn and minimax method to rapidly neutralise intruders in strategic installations |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3376604/ https://www.ncbi.nlm.nih.gov/pubmed/22737008 http://dx.doi.org/10.3390/s120303281 |
work_keys_str_mv | AT conesamunozjesus consolidationofawsnandminimaxmethodtorapidlyneutraliseintrudersinstrategicinstallations AT ribeiroangela consolidationofawsnandminimaxmethodtorapidlyneutraliseintrudersinstrategicinstallations |