Cargando…
Pattern Classification Using an Olfactory Model with PCA Feature Selection in Electronic Noses: Study and Application
Biologically-inspired models and algorithms are considered as promising sensor array signal processing methods for electronic noses. Feature selection is one of the most important issues for developing robust pattern recognition models in machine learning. This paper describes an investigation into...
Autores principales: | Fu, Jun, Huang, Canqin, Xing, Jianguo, Zheng, Junbao |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Molecular Diversity Preservation International (MDPI)
2012
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3376605/ https://www.ncbi.nlm.nih.gov/pubmed/22736979 http://dx.doi.org/10.3390/s120302818 |
Ejemplares similares
-
Rapid Classification of Hairtail Fish and Pork Freshness Using an Electronic Nose Based on the PCA Method
por: Tian, Xiu-Ying, et al.
Publicado: (2011) -
Improved Algorithms for the Classification of Rough Rice Using a Bionic Electronic Nose Based on PCA and the Wilks Distribution
por: Xu, Sai, et al.
Publicado: (2014) -
Selectivity Enhancement in Electronic Nose Based on an Optimized DQN
por: Wang, Yu, et al.
Publicado: (2017) -
Application of an Electronic Nose Instrument to Fast Classification of Polish Honey Types
por: Dymerski, Tomasz, et al.
Publicado: (2014) -
Hybrid Feature-Learning-Based PSO-PCA Feature Engineering Approach for Blood Cancer Classification
por: Atteia, Ghada, et al.
Publicado: (2023)