Cargando…
Identifying Biological Network Structure, Predicting Network Behavior, and Classifying Network State With High Dimensional Model Representation (HDMR)
This work presents an adapted Random Sampling - High Dimensional Model Representation (RS-HDMR) algorithm for synergistically addressing three key problems in network biology: (1) identifying the structure of biological networks from multivariate data, (2) predicting network response under previousl...
Autores principales: | Miller, Miles A., Feng, Xiao-Jiang, Li, Genyuan, Rabitz, Herschel A. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2012
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3377689/ https://www.ncbi.nlm.nih.gov/pubmed/22723838 http://dx.doi.org/10.1371/journal.pone.0037664 |
Ejemplares similares
-
Analysis of gene network robustness based on saturated fixed point attractors
por: Li, Genyuan, et al.
Publicado: (2014) -
High efficiency classification of children with autism spectrum disorder
por: Li, Genyuan, et al.
Publicado: (2018) -
Global Sensitivity Analysis with Mixtures: A Generalized Functional ANOVA Approach
por: Borgonovo, Emanuele, et al.
Publicado: (2021) -
Identifying influential nodes based on network representation learning in complex networks
por: Wei, Hao, et al.
Publicado: (2018) -
Identifying Disease Related Genes by Network Representation and Convolutional Neural Network
por: Chen, Bolin, et al.
Publicado: (2021)