Cargando…

MEMS-based handheld confocal microscope for in-vivo skin imaging

This paper describes a handheld laser scanning confocal microscope for skin microscopy. Beam scanning is accomplished with an electromagnetic MEMS bi-axial micromirror developed for pico projector applications, providing 800x600 (SVGA) resolution at 56 frames per second. The design uses commercial o...

Descripción completa

Detalles Bibliográficos
Autores principales: Arrasmith, Christopher L., Dickensheets, David L., Mahadevan-Jansen, Anita
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Optical Society of America 2010
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3378354/
https://www.ncbi.nlm.nih.gov/pubmed/20389391
http://dx.doi.org/10.1364/OE.18.003805
Descripción
Sumario:This paper describes a handheld laser scanning confocal microscope for skin microscopy. Beam scanning is accomplished with an electromagnetic MEMS bi-axial micromirror developed for pico projector applications, providing 800x600 (SVGA) resolution at 56 frames per second. The design uses commercial objective lenses with an optional hemisphere front lens, operating with a range of numerical aperture from NA=0.35 to NA=1.1 and corresponding diagonal field of view ranging from 653 μm to 216 μm. Using NA=1.1 and a laser wavelength of 830 nm we measured the axial response to be 1.14 μm full width at half maximum, with a corresponding 10%-90% lateral edge response of 0.39 μm. Image examples showing both epidermal and dermal features including capillary blood flow are provided. These images represent the highest resolution and frame rate yet achieved for tissue imaging with a MEMS bi-axial scan mirror.