Cargando…
Estrogen Modulates NFκB Signaling by Enhancing IκBα Levels and Blocking p65 Binding at the Promoters of Inflammatory Genes via Estrogen Receptor-β
BACKGROUND: NFκB signaling is critical for expression of genes involved in the vascular injury response. We have shown that estrogen (17β-estradiol, E2) inhibits expression of these genes in an estrogen receptor (ER)-dependent manner in injured rat carotid arteries and in tumor necrosis factor (TNF)...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2012
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3378567/ https://www.ncbi.nlm.nih.gov/pubmed/22723832 http://dx.doi.org/10.1371/journal.pone.0036890 |
_version_ | 1782236058546601984 |
---|---|
author | Xing, Dongqi Oparil, Suzanne Yu, Hao Gong, Kaizheng Feng, Wenguang Black, Jonathan Chen, Yiu-Fai Nozell, Susan |
author_facet | Xing, Dongqi Oparil, Suzanne Yu, Hao Gong, Kaizheng Feng, Wenguang Black, Jonathan Chen, Yiu-Fai Nozell, Susan |
author_sort | Xing, Dongqi |
collection | PubMed |
description | BACKGROUND: NFκB signaling is critical for expression of genes involved in the vascular injury response. We have shown that estrogen (17β-estradiol, E2) inhibits expression of these genes in an estrogen receptor (ER)-dependent manner in injured rat carotid arteries and in tumor necrosis factor (TNF)-α treated rat aortic smooth muscle cells (RASMCs). This study tested whether E2 inhibits NFκB signaling in RASMCs and defined the mechanisms. METHODOLOGY/PRINCIPAL FINDINGS: TNF-α treated RASMCs demonstrated rapid degradation of IκBα (10–30 min), followed by dramatic increases in IκBα mRNA and protein synthesis (40–60 min). E2 enhanced TNF-α induced IκBα synthesis without affecting IκBα degradation. Chromatin immunoprecipitation (ChIP) assays revealed that E2 pretreatment both enhanced TNF-α induced binding of NFκB p65 to the IκBα promoter and suppressed TNF-α induced binding of NFκB p65 to and reduced the levels of acetylated histone 3 at promoters of monocyte chemotactic protein (MCP)-1 and cytokine-induced neutrophil chemoattractant (CINC)-2β genes. ChIP analyses also demonstrated that ERβ can be recruited to the promoters of MCP-1 and CINC-2β during co-treatment with TNF-α and E2. CONCLUSIONS: These data demonstrate that E2 inhibits inflammation in RASMCs by two distinct mechanisms: promoting new synthesis of IκBα, thus accelerating a negative feedback loop in NFκB signaling, and directly inhibiting binding of NFκB to the promoters of inflammatory genes. This first demonstration of multifaceted modulation of NFκB signaling by E2 may represent a novel mechanism by which E2 protects the vasculature against inflammatory injury. |
format | Online Article Text |
id | pubmed-3378567 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2012 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-33785672012-06-21 Estrogen Modulates NFκB Signaling by Enhancing IκBα Levels and Blocking p65 Binding at the Promoters of Inflammatory Genes via Estrogen Receptor-β Xing, Dongqi Oparil, Suzanne Yu, Hao Gong, Kaizheng Feng, Wenguang Black, Jonathan Chen, Yiu-Fai Nozell, Susan PLoS One Research Article BACKGROUND: NFκB signaling is critical for expression of genes involved in the vascular injury response. We have shown that estrogen (17β-estradiol, E2) inhibits expression of these genes in an estrogen receptor (ER)-dependent manner in injured rat carotid arteries and in tumor necrosis factor (TNF)-α treated rat aortic smooth muscle cells (RASMCs). This study tested whether E2 inhibits NFκB signaling in RASMCs and defined the mechanisms. METHODOLOGY/PRINCIPAL FINDINGS: TNF-α treated RASMCs demonstrated rapid degradation of IκBα (10–30 min), followed by dramatic increases in IκBα mRNA and protein synthesis (40–60 min). E2 enhanced TNF-α induced IκBα synthesis without affecting IκBα degradation. Chromatin immunoprecipitation (ChIP) assays revealed that E2 pretreatment both enhanced TNF-α induced binding of NFκB p65 to the IκBα promoter and suppressed TNF-α induced binding of NFκB p65 to and reduced the levels of acetylated histone 3 at promoters of monocyte chemotactic protein (MCP)-1 and cytokine-induced neutrophil chemoattractant (CINC)-2β genes. ChIP analyses also demonstrated that ERβ can be recruited to the promoters of MCP-1 and CINC-2β during co-treatment with TNF-α and E2. CONCLUSIONS: These data demonstrate that E2 inhibits inflammation in RASMCs by two distinct mechanisms: promoting new synthesis of IκBα, thus accelerating a negative feedback loop in NFκB signaling, and directly inhibiting binding of NFκB to the promoters of inflammatory genes. This first demonstration of multifaceted modulation of NFκB signaling by E2 may represent a novel mechanism by which E2 protects the vasculature against inflammatory injury. Public Library of Science 2012-06-19 /pmc/articles/PMC3378567/ /pubmed/22723832 http://dx.doi.org/10.1371/journal.pone.0036890 Text en Xing et al. http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are properly credited. |
spellingShingle | Research Article Xing, Dongqi Oparil, Suzanne Yu, Hao Gong, Kaizheng Feng, Wenguang Black, Jonathan Chen, Yiu-Fai Nozell, Susan Estrogen Modulates NFκB Signaling by Enhancing IκBα Levels and Blocking p65 Binding at the Promoters of Inflammatory Genes via Estrogen Receptor-β |
title | Estrogen Modulates NFκB Signaling by Enhancing IκBα Levels and Blocking p65 Binding at the Promoters of Inflammatory Genes via Estrogen Receptor-β |
title_full | Estrogen Modulates NFκB Signaling by Enhancing IκBα Levels and Blocking p65 Binding at the Promoters of Inflammatory Genes via Estrogen Receptor-β |
title_fullStr | Estrogen Modulates NFκB Signaling by Enhancing IκBα Levels and Blocking p65 Binding at the Promoters of Inflammatory Genes via Estrogen Receptor-β |
title_full_unstemmed | Estrogen Modulates NFκB Signaling by Enhancing IκBα Levels and Blocking p65 Binding at the Promoters of Inflammatory Genes via Estrogen Receptor-β |
title_short | Estrogen Modulates NFκB Signaling by Enhancing IκBα Levels and Blocking p65 Binding at the Promoters of Inflammatory Genes via Estrogen Receptor-β |
title_sort | estrogen modulates nfκb signaling by enhancing iκbα levels and blocking p65 binding at the promoters of inflammatory genes via estrogen receptor-β |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3378567/ https://www.ncbi.nlm.nih.gov/pubmed/22723832 http://dx.doi.org/10.1371/journal.pone.0036890 |
work_keys_str_mv | AT xingdongqi estrogenmodulatesnfkbsignalingbyenhancingikbalevelsandblockingp65bindingatthepromotersofinflammatorygenesviaestrogenreceptorb AT oparilsuzanne estrogenmodulatesnfkbsignalingbyenhancingikbalevelsandblockingp65bindingatthepromotersofinflammatorygenesviaestrogenreceptorb AT yuhao estrogenmodulatesnfkbsignalingbyenhancingikbalevelsandblockingp65bindingatthepromotersofinflammatorygenesviaestrogenreceptorb AT gongkaizheng estrogenmodulatesnfkbsignalingbyenhancingikbalevelsandblockingp65bindingatthepromotersofinflammatorygenesviaestrogenreceptorb AT fengwenguang estrogenmodulatesnfkbsignalingbyenhancingikbalevelsandblockingp65bindingatthepromotersofinflammatorygenesviaestrogenreceptorb AT blackjonathan estrogenmodulatesnfkbsignalingbyenhancingikbalevelsandblockingp65bindingatthepromotersofinflammatorygenesviaestrogenreceptorb AT chenyiufai estrogenmodulatesnfkbsignalingbyenhancingikbalevelsandblockingp65bindingatthepromotersofinflammatorygenesviaestrogenreceptorb AT nozellsusan estrogenmodulatesnfkbsignalingbyenhancingikbalevelsandblockingp65bindingatthepromotersofinflammatorygenesviaestrogenreceptorb |